BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 36602359)

  • 1. Alteration of Chain-Length Selectivity and Thermostability of
    Huang J; Dai S; Chen X; Xu L; Yan J; Yang M; Yan Y
    Appl Environ Microbiol; 2023 Jan; 89(1):e0187822. PubMed ID: 36602359
    [No Abstract]   [Full Text] [Related]  

  • 2. Enhancing the thermostability of
    Zhao JF; Wang Z; Gao FL; Lin JP; Yang LR; Wu MB
    RSC Adv; 2018 Dec; 8(72):41247-41254. PubMed ID: 35559271
    [No Abstract]   [Full Text] [Related]  

  • 3. Rational Design of Lipase ROL to Increase Its Thermostability for Production of Structured Tags.
    Chow JY; Nguyen GKT
    Int J Mol Sci; 2022 Aug; 23(17):. PubMed ID: 36076913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing the Thermostability of Rhizomucor miehei Lipase with a Limited Screening Library by Rational-Design Point Mutations and Disulfide Bonds.
    Li G; Fang X; Su F; Chen Y; Xu L; Yan Y
    Appl Environ Microbiol; 2018 Jan; 84(2):. PubMed ID: 29101200
    [No Abstract]   [Full Text] [Related]  

  • 5. Engineering a disulfide bond in the lid hinge region of Rhizopus chinensis lipase: increased thermostability and altered acyl chain length specificity.
    Yu XW; Tan NJ; Xiao R; Xu Y
    PLoS One; 2012; 7(10):e46388. PubMed ID: 23056295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering of a thermo-alkali-stable lipase from Rhizopus chinensis by rational design of a buried disulfide bond and combinatorial mutagenesis.
    Wang R; Wang S; Xu Y; Yu X
    J Ind Microbiol Biotechnol; 2020 Dec; 47(12):1019-1030. PubMed ID: 33070231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of recombinant Rhizopus oryzae lipase by the yeast Yarrowia lipolytica results in increased enzymatic thermostability.
    Yuzbashev TV; Yuzbasheva EY; Vibornaya TV; Sobolevskaya TI; Laptev IA; Gavrikov AV; Sineoky SP
    Protein Expr Purif; 2012 Mar; 82(1):83-9. PubMed ID: 22155648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of Met93 and Thr96 in the lid hinge region of Rhizopus chinensis lipase.
    Zhu SS; Li M; Yu X; Xu Y
    Appl Biochem Biotechnol; 2013 May; 170(2):436-47. PubMed ID: 23546870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-level extracellular production of Rhizopus oryzae lipase in Pichia pastoris via a strategy combining optimization of gene-copy number with co-expression of ERAD-related proteins.
    Jiao L; Zhou Q; Su Z; Xu L; Yan Y
    Protein Expr Purif; 2018 Jul; 147():1-12. PubMed ID: 29452270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Creation of Rhizopus oryzae lipase having a unique oxyanion hole by combinatorial mutagenesis in the lid domain.
    Shiraga S; Ishiguro M; Fukami H; Nakao M; Ueda M
    Appl Microbiol Biotechnol; 2005 Oct; 68(6):779-85. PubMed ID: 15729555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing the Thermostability and Catalytic Activity of the Lipase from
    Wang Y; Wang Z; Yu H; Teng H; Wu J; Xu J; Yang L
    J Agric Food Chem; 2024 Jun; ():. PubMed ID: 38913033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of the stability of a prolipase from Rhizopus oryzae toward aldehydes by saturation mutagenesis.
    Di Lorenzo M; Hidalgo A; Molina R; Hermoso JA; Pirozzi D; Bornscheuer UT
    Appl Environ Microbiol; 2007 Nov; 73(22):7291-9. PubMed ID: 17890336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. N-Glycosylation Engineering to Improve the Constitutive Expression of Rhizopus oryzae Lipase in Komagataella phaffii.
    Yu XW; Yang M; Jiang C; Zhang X; Xu Y
    J Agric Food Chem; 2017 Jul; 65(29):6009-6015. PubMed ID: 28681607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient Heterologous Production of
    Jiao L; Zhou Q; Su Z; Yan Y
    Int J Mol Sci; 2018 Oct; 19(11):. PubMed ID: 30373304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning, expression, characterization and role of the leader sequence of a lipase from Rhizopus oryzae.
    Beer HD; McCarthy JE; Bornscheuer UT; Schmid RD
    Biochim Biophys Acta; 1998 Aug; 1399(2-3):173-80. PubMed ID: 9765593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Codon optimization, expression and enzymatic comparison of Rhizopus oryzae lipases pro-ROL and m-ROL in Pichia pastoris.
    Yang J; Yan X; Huang R; Zhang B
    Sheng Wu Gong Cheng Xue Bao; 2011 Dec; 27(12):1780-8. PubMed ID: 22506419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic studies of Rhizopus oryzae lipase using monomolecular film technique.
    Ben Salah A; Sayari A; Verger R; Gargouri Y
    Biochimie; 2001 Jun; 83(6):463-9. PubMed ID: 11506890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced thermostability of a Rhizopus chinensis lipase by in vivo recombination in Pichia pastoris.
    Yu XW; Wang R; Zhang M; Xu Y; Xiao R
    Microb Cell Fact; 2012 Aug; 11():102. PubMed ID: 22866667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction of the yeast whole-cell Rhizopus oryzae lipase biocatalyst with high activity.
    Chen ML; Guo Q; Wang RZ; Xu J; Zhou CW; Ruan H; He GQ
    J Zhejiang Univ Sci B; 2011 Jul; 12(7):545-51. PubMed ID: 21726061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Improving the thermostability of α-amylase from Rhizopus oryzae by rational design].
    Yang Q; Tang B; Li S
    Sheng Wu Gong Cheng Xue Bao; 2018 Jul; 34(7):1117-1127. PubMed ID: 30058310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.