These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 36602414)

  • 1. Redefining pseudokinases: A look at the untapped enzymatic potential of pseudokinases.
    Pon A; Osinski A; Sreelatha A
    IUBMB Life; 2023 Apr; 75(4):370-376. PubMed ID: 36602414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein AMPylation by an Evolutionarily Conserved Pseudokinase.
    Sreelatha A; Yee SS; Lopez VA; Park BC; Kinch LN; Pilch S; Servage KA; Zhang J; Jiou J; Karasiewicz-Urbańska M; Łobocka M; Grishin NV; Orth K; Kucharczyk R; Pawłowski K; Tomchick DR; Tagliabracci VS
    Cell; 2018 Oct; 175(3):809-821.e19. PubMed ID: 30270044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein polyglutamylation catalyzed by the bacterial calmodulin-dependent pseudokinase SidJ.
    Sulpizio A; Minelli ME; Wan M; Burrowes PD; Wu X; Sanford EJ; Shin JH; Williams BC; Goldberg ML; Smolka MB; Mao Y
    Elife; 2019 Nov; 8():. PubMed ID: 31682223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conserved Characteristics of NMPylation Activities of Alpha- and Betacoronavirus NiRAN Domains.
    Slanina H; Madhugiri R; Wenk K; Reinke T; Schultheiß K; Schultheis J; Karl N; Linne U; Ziebuhr J
    J Virol; 2023 Jun; 97(6):e0046523. PubMed ID: 37199624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and functional insights into the enzymatic plasticity of the SARS-CoV-2 NiRAN domain.
    Small GI; Fedorova O; Olinares PDB; Chandanani J; Banerjee A; Choi YJ; Molina H; Chait BT; Darst SA; Campbell EA
    Mol Cell; 2023 Nov; 83(21):3921-3930.e7. PubMed ID: 37890482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mechanism of RNA capping by SARS-CoV-2.
    Park GJ; Osinski A; Hernandez G; Eitson JL; Majumdar A; Tonelli M; Henzler-Wildman K; Pawłowski K; Chen Z; Li Y; Schoggins JW; Tagliabracci VS
    Nature; 2022 Sep; 609(7928):793-800. PubMed ID: 35944563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A mechanism for SARS-CoV-2 RNA capping and its inhibition by nucleotide analog inhibitors.
    Yan L; Huang Y; Ge J; Liu Z; Lu P; Huang B; Gao S; Wang J; Tan L; Ye S; Yu F; Lan W; Xu S; Zhou F; Shi L; Guddat LW; Gao Y; Rao Z; Lou Z
    Cell; 2022 Nov; 185(23):4347-4360.e17. PubMed ID: 36335936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural basis for protein glutamylation by the Legionella pseudokinase SidJ.
    Adams M; Sharma R; Colby T; Weis F; Matic I; Bhogaraju S
    Nat Commun; 2021 Oct; 12(1):6174. PubMed ID: 34702826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The secret life of kinases: insights into non-catalytic signalling functions from pseudokinases.
    Jacobsen AV; Murphy JM
    Biochem Soc Trans; 2017 Jun; 45(3):665-681. PubMed ID: 28620028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and mechanistic basis for protein glutamylation by the kinase fold.
    Osinski A; Black MH; Pawłowski K; Chen Z; Li Y; Tagliabracci VS
    Mol Cell; 2021 Nov; 81(21):4527-4539.e8. PubMed ID: 34407442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide and structural analyses of pseudokinases encoded in the genome of Arabidopsis thaliana provide functional insights.
    Paul A; Srinivasan N
    Proteins; 2020 Dec; 88(12):1620-1638. PubMed ID: 32667690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radioactive Assay of
    Sulpizio AG; Shin JH; Minelli ME; Mao Y
    Bio Protoc; 2020 Oct; 10(19):e3770. PubMed ID: 33659428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleotide-binding mechanisms in pseudokinases.
    Hammarén HM; Virtanen AT; Silvennoinen O
    Biosci Rep; 2015 Nov; 36(1):e00282. PubMed ID: 26589967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mechanism of RNA capping by SARS-CoV-2.
    Park GJ; Osinski A; Hernandez G; Eitson JL; Majumdar A; Tonelli M; Henzler-Wildman K; Pawłowski K; Chen Z; Li Y; Schoggins JW; Tagliabracci VS
    Res Sq; 2022 Feb; ():. PubMed ID: 35194601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Looking lively: emerging principles of pseudokinase signaling.
    Sheetz JB; Lemmon MA
    Trends Biochem Sci; 2022 Oct; 47(10):875-891. PubMed ID: 35585008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal coordination in kinases and pseudokinases.
    Knape MJ; Herberg FW
    Biochem Soc Trans; 2017 Jun; 45(3):653-663. PubMed ID: 28620027
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and functional insights into the enzymatic plasticity of the SARS-CoV-2 NiRAN Domain.
    Small GI; Fedorova O; Olinares PDB; Chandanani J; Banerjee A; Choi YJ; Molina H; Chait B; Darst SA; Campbell EA
    bioRxiv; 2023 Sep; ():. PubMed ID: 37808858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of bacterial ubiquitin ligases by SidJ-calmodulin catalysed glutamylation.
    Bhogaraju S; Bonn F; Mukherjee R; Adams M; Pfleiderer MM; Galej WP; Matkovic V; Lopez-Mosqueda J; Kalayil S; Shin D; Dikic I
    Nature; 2019 Aug; 572(7769):382-386. PubMed ID: 31330532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA-dependent RNA polymerase of SARS-CoV-2 regulate host mRNA translation efficiency by hijacking eEF1A factors.
    Gan H; Zhou X; Lei Q; Wu L; Niu J; Zheng Q
    Biochim Biophys Acta Mol Basis Dis; 2024 Jan; 1870(1):166871. PubMed ID: 37673357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pseudokinases repurpose flexibility signatures associated with the protein kinase fold for noncatalytic roles.
    Paul A; Subhadarshini S; Srinivasan N
    Proteins; 2022 Mar; 90(3):747-764. PubMed ID: 34708889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.