These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 36602674)

  • 21. A data-driven interpretable ensemble framework based on tree models for forecasting the occurrence of COVID-19 in the USA.
    Zheng HL; An SY; Qiao BJ; Guan P; Huang DS; Wu W
    Environ Sci Pollut Res Int; 2023 Jan; 30(5):13648-13659. PubMed ID: 36131178
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stacked generalization: an introduction to super learning.
    Naimi AI; Balzer LB
    Eur J Epidemiol; 2018 May; 33(5):459-464. PubMed ID: 29637384
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An Ensemble Approach to Predict Early-Stage Diabetes Risk Using Machine Learning: An Empirical Study.
    Laila UE; Mahboob K; Khan AW; Khan F; Taekeun W
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890927
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ensemble of heterogeneous classifiers for diagnosis and prediction of coronary artery disease with reduced feature subset.
    Velusamy D; Ramasamy K
    Comput Methods Programs Biomed; 2021 Jan; 198():105770. PubMed ID: 33027698
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Novel Extra Tree Ensemble Optimized DL Framework (ETEODL) for Early Detection of Diabetes.
    Arya M; Sastry G H; Motwani A; Kumar S; Zaguia A
    Front Public Health; 2021; 9():797877. PubMed ID: 35242738
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Early Diabetes Prediction: A Comparative Study Using Machine Learning Techniques.
    Poly TN; Islam MM; Li YJ
    Stud Health Technol Inform; 2022 Jun; 295():409-413. PubMed ID: 35773898
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development and internal validation of machine learning algorithms for end-stage renal disease risk prediction model of people with type 2 diabetes mellitus and diabetic kidney disease.
    Zou Y; Zhao L; Zhang J; Wang Y; Wu Y; Ren H; Wang T; Zhang R; Wang J; Zhao Y; Qin C; Xu H; Li L; Chai Z; Cooper ME; Tong N; Liu F
    Ren Fail; 2022 Dec; 44(1):562-570. PubMed ID: 35373711
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predicting Chronic Kidney Disease Using Hybrid Machine Learning Based on Apache Spark.
    Abdel-Fattah MA; Othman NA; Goher N
    Comput Intell Neurosci; 2022; 2022():9898831. PubMed ID: 35251161
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Practical considerations for specifying a super learner.
    Phillips RV; van der Laan MJ; Lee H; Gruber S
    Int J Epidemiol; 2023 Aug; 52(4):1276-1285. PubMed ID: 36905602
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction?
    Anderson AB; Grazal CF; Balazs GC; Potter BK; Dickens JF; Forsberg JA
    Clin Orthop Relat Res; 2020 Jul; 478(7):0-1618. PubMed ID: 32282466
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Diabetes Detection Models in Mexican Patients by Combining Machine Learning Algorithms and Feature Selection Techniques for Clinical and Paraclinical Attributes: A Comparative Evaluation.
    García-Domínguez A; Galván-Tejada CE; Magallanes-Quintanar R; Gamboa-Rosales H; Curiel IG; Peralta-Romero J; Cruz M
    J Diabetes Res; 2023; 2023():9713905. PubMed ID: 37404324
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prediction of Gestational Diabetes Mellitus under Cascade and Ensemble Learning Algorithm.
    Zhang J; Wang F
    Comput Intell Neurosci; 2022; 2022():3212738. PubMed ID: 35875747
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Super learner model for classifying leukemia through gene expression monitoring.
    Selvaraj S; Alsayed AO; Ismail NA; Kavin BP; Onyema EM; Seng GH; Uchechi AQ
    Discov Oncol; 2024 Sep; 15(1):499. PubMed ID: 39331180
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A two-stage super learner for healthcare expenditures.
    Wu Z; Berkowitz SA; Heagerty PJ; Benkeser D
    Health Serv Outcomes Res Methodol; 2022 Dec; 22(4):435-453. PubMed ID: 36437854
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mortality risk score prediction in an elderly population using machine learning.
    Rose S
    Am J Epidemiol; 2013 Mar; 177(5):443-52. PubMed ID: 23364879
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development and validation of a meta-learner for combining statistical and machine learning prediction models in individuals with depression.
    Liu Q; Salanti G; De Crescenzo F; Ostinelli EG; Li Z; Tomlinson A; Cipriani A; Efthimiou O
    BMC Psychiatry; 2022 May; 22(1):337. PubMed ID: 35578254
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Predictive modeling of blood pressure during hemodialysis: a comparison of linear model, random forest, support vector regression, XGBoost, LASSO regression and ensemble method.
    Huang JC; Tsai YC; Wu PY; Lien YH; Chien CY; Kuo CF; Hung JF; Chen SC; Kuo CH
    Comput Methods Programs Biomed; 2020 Oct; 195():105536. PubMed ID: 32485511
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An efficient ensemble based machine learning approach for predicting Chronic Kidney Disease.
    Chhabra D; Juneja M; Chutani G
    Curr Med Imaging; 2023 May; ():. PubMed ID: 37157217
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Polycystic Ovary Syndrome Detection Machine Learning Model Based on Optimized Feature Selection and Explainable Artificial Intelligence.
    Elmannai H; El-Rashidy N; Mashal I; Alohali MA; Farag S; El-Sappagh S; Saleh H
    Diagnostics (Basel); 2023 Apr; 13(8):. PubMed ID: 37189606
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Early Prediction of Diabetes Using an Ensemble of Machine Learning Models.
    Dutta A; Hasan MK; Ahmad M; Awal MA; Islam MA; Masud M; Meshref H
    Int J Environ Res Public Health; 2022 Sep; 19(19):. PubMed ID: 36231678
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.