BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 36602730)

  • 1. Pyrolysis characteristics, kinetics, and biochar of fermented pine sawdust-based waste.
    Zhang Y; Hu J; Cheng X; Tahir MH
    Environ Sci Pollut Res Int; 2023 Mar; 30(14):39994-40007. PubMed ID: 36602730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The co-pyrolysis of waste urea-formaldehyde resin with pine sawdust: co-pyrolysis behavior, pyrocarbon and its adsorption performance for Cr (VI).
    Zhong W; Li X; Luo S; Tan W; Zuo Z; Ren D
    Environ Sci Pollut Res Int; 2023 Jun; 30(28):72854-72866. PubMed ID: 37178303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption of ammonium in aqueous solutions by pine sawdust and wheat straw biochars.
    Yang HI; Lou K; Rajapaksha AU; Ok YS; Anyia AO; Chang SX
    Environ Sci Pollut Res Int; 2018 Sep; 25(26):25638-25647. PubMed ID: 28229381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of Intrinsic Physicochemical Properties of Agroforestry Waste on Its Pyrolysis Characteristics and Behavior.
    Liu H; Zhao B; Zhang X; Zhang Y
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface characterization of maize-straw-derived biochar and their sorption mechanism for Pb2+ and methylene blue.
    Guo C; Zou J; Yang J; Wang K; Song S
    PLoS One; 2020; 15(8):e0238105. PubMed ID: 32853282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption of methylene blue on biochar microparticles derived from different waste materials.
    Lonappan L; Rouissi T; Das RK; Brar SK; Ramirez AA; Verma M; Surampalli RY; Valero JR
    Waste Manag; 2016 Mar; 49():537-544. PubMed ID: 26818183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis.
    Mishra RK; Mohanty K
    Bioresour Technol; 2018 Mar; 251():63-74. PubMed ID: 29272770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pyrolysis kinetics and thermodynamic parameters of the hydrochars derived from co-hydrothermal carbonization of sawdust and sewage sludge using thermogravimetric analysis.
    Ma J; Luo H; Li Y; Liu Z; Li D; Gai C; Jiao W
    Bioresour Technol; 2019 Jun; 282():133-141. PubMed ID: 30852333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Copper removal from aqueous solution using chemical precipitation and adsorption by Himalayan Pine Forest Residue as Biochar.
    Bashir M; Mohan C; Tyagi S; Annachhatre A
    Water Sci Technol; 2022 Aug; 86(3):530-554. PubMed ID: 35960835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochar properties and lead(II) adsorption capacity depend on feedstock type, pyrolysis temperature, and steam activation.
    Kwak JH; Islam MS; Wang S; Messele SA; Naeth MA; El-Din MG; Chang SX
    Chemosphere; 2019 Sep; 231():393-404. PubMed ID: 31146131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon dioxide capture in biochar produced from pine sawdust and paper mill sludge: Effect of porous structure and surface chemistry.
    Igalavithana AD; Choi SW; Shang J; Hanif A; Dissanayake PD; Tsang DCW; Kwon JH; Lee KB; Ok YS
    Sci Total Environ; 2020 Oct; 739():139845. PubMed ID: 32758935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of biomass components, temperature and pressure on the pyrolysis behavior and biochar properties of pine nut shells.
    Qin L; Wu Y; Hou Z; Jiang E
    Bioresour Technol; 2020 Oct; 313():123682. PubMed ID: 32585452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mixed biochar obtained by the co-pyrolysis of shrimp shell with corn straw: Co-pyrolysis characteristics and its adsorption capability.
    Liu J; Yang X; Liu H; Jia X; Bao Y
    Chemosphere; 2021 Nov; 282():131116. PubMed ID: 34118622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of microwave pretreatment on catalytic fast pyrolysis of pine sawdust.
    Liang J; Xu X; Yu Z; Chen L; Liao Y; Ma X
    Bioresour Technol; 2019 Dec; 293():122080. PubMed ID: 31487617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pyrolysis polygeneration of pine nut shell: Quality of pyrolysis products and study on the preparation of activated carbon from biochar.
    Chen D; Chen X; Sun J; Zheng Z; Fu K
    Bioresour Technol; 2016 Sep; 216():629-36. PubMed ID: 27289053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pyrolysis of
    Garba K; Mohammed IY; Isa YM; Abubakar LG; Abakr YA; Hameed BH
    Heliyon; 2023 Feb; 9(2):e13234. PubMed ID: 36785823
    [No Abstract]   [Full Text] [Related]  

  • 17. Adsorption characteristics and mechanism of p-nitrophenol by pine sawdust biochar samples produced at different pyrolysis temperatures.
    Liu L; Deng G; Shi X
    Sci Rep; 2020 Mar; 10(1):5149. PubMed ID: 32198483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cadmium adsorption characteristics of biochars derived using various pine tree residues and pyrolysis temperatures.
    Park JH; Wang JJ; Kim SH; Kang SW; Jeong CY; Jeon JR; Park KH; Cho JS; Delaune RD; Seo DC
    J Colloid Interface Sci; 2019 Oct; 553():298-307. PubMed ID: 31212229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of the characteristics and atrazine adsorption capacity of co-pyrolysed and mixed biochars generated from corn straw and sawdust.
    Gao Y; Jiang Z; Li J; Xie W; Jiang Q; Bi M; Zhang Y
    Environ Res; 2019 May; 172():561-568. PubMed ID: 30861465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pyrolytic kinetics, reaction mechanisms and gas emissions of waste automotive paint sludge via TG-FTIR and Py-GC/MS.
    Tian L; Liu T; Yang J; Yang H; Liu Z; Zhao Y; Huang Q; Huang Z
    J Environ Manage; 2023 Feb; 328():116962. PubMed ID: 36470002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.