These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 36602735)
1. Hybrid attention-based temporal convolutional bidirectional LSTM approach for wind speed interval prediction. Bommidi BS; Kosana V; Teeparthi K; Madasthu S Environ Sci Pollut Res Int; 2023 Mar; 30(14):40018-40030. PubMed ID: 36602735 [TBL] [Abstract][Full Text] [Related]
2. Short-term wind speed forecasting based on a hybrid model of ICEEMDAN, MFE, LSTM and informer. Xinxin W; Xiaopan S; Xueyi A; Shijia L PLoS One; 2023; 18(9):e0289161. PubMed ID: 37682883 [TBL] [Abstract][Full Text] [Related]
3. A novel model based on CEEMDAN, IWOA, and LSTM for ultra-short-term wind power forecasting. Yang S; Yuan A; Yu Z Environ Sci Pollut Res Int; 2023 Jan; 30(5):11689-11705. PubMed ID: 36098919 [TBL] [Abstract][Full Text] [Related]
4. ICEEMDAN-Informer-GWO: a hybrid model for accurate wind speed prediction. Bommidi BS; Teeparthi K; Dulla Mallesham VK Environ Sci Pollut Res Int; 2024 May; 31(23):34056-34081. PubMed ID: 38696015 [TBL] [Abstract][Full Text] [Related]
5. Research on Wind Power Short-Term Forecasting Method Based on Temporal Convolutional Neural Network and Variational Modal Decomposition. Tang J; Chien YR Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236512 [TBL] [Abstract][Full Text] [Related]
6. Multi-step interval prediction of ultra-short-term wind power based on CEEMDAN-FIG and CNN-BiLSTM. Zhao Z; Nan H; Liu Z; Yu Y Environ Sci Pollut Res Int; 2022 Aug; 29(38):58097-58109. PubMed ID: 35362890 [TBL] [Abstract][Full Text] [Related]
7. A Novel Hybrid Data-Driven Model for Daily Land Surface Temperature Forecasting Using Long Short-Term Memory Neural Network Based on Ensemble Empirical Mode Decomposition. Zhang X; Zhang Q; Zhang G; Nie Z; Gui Z; Que H Int J Environ Res Public Health; 2018 May; 15(5):. PubMed ID: 29883381 [TBL] [Abstract][Full Text] [Related]
8. A hybrid prediction model for forecasting wind energy resources. Zhang Y; Pan G Environ Sci Pollut Res Int; 2020 Jun; 27(16):19428-19446. PubMed ID: 32215801 [TBL] [Abstract][Full Text] [Related]
9. Optimization scheme of wind energy prediction based on artificial intelligence. Zhang Y; Li R; Zhang J Environ Sci Pollut Res Int; 2021 Aug; 28(29):39966-39981. PubMed ID: 33763837 [TBL] [Abstract][Full Text] [Related]
10. A hybrid wavelet transform based short-term wind speed forecasting approach. Wang J ScientificWorldJournal; 2014; 2014():914127. PubMed ID: 25136699 [TBL] [Abstract][Full Text] [Related]
11. Short-Time Wind Speed Forecast Using Artificial Learning-Based Algorithms. Ibrahim M; Alsheikh A; Al-Hindawi Q; Al-Dahidi S; ElMoaqet H Comput Intell Neurosci; 2020; 2020():8439719. PubMed ID: 32377179 [TBL] [Abstract][Full Text] [Related]
12. Long, short, and medium terms wind speed prediction model based on LSTM optimized by improved moth flame optimization algorithm. Li R; Wang J; Li J; Kou M Environ Sci Pollut Res Int; 2024 May; 31(25):37256-37282. PubMed ID: 38771541 [TBL] [Abstract][Full Text] [Related]
13. PM Yang M; Fan H; Zhao K Int J Environ Res Public Health; 2019 Nov; 16(22):. PubMed ID: 31739449 [TBL] [Abstract][Full Text] [Related]
14. A novel compound wind speed forecasting model based on the back propagation neural network optimized by bat algorithm. Cui Y; Huang C; Cui Y Environ Sci Pollut Res Int; 2020 Mar; 27(7):7353-7365. PubMed ID: 31884551 [TBL] [Abstract][Full Text] [Related]
15. Multi-step wind speed forecasting based on a hybrid decomposition technique and an improved back-propagation neural network. Sun W; Wang X; Tan B Environ Sci Pollut Res Int; 2022 Jul; 29(33):49684-49699. PubMed ID: 35220530 [TBL] [Abstract][Full Text] [Related]
16. Ultra-Short-Term Wind Power Forecasting Based on CGAN-CNN-LSTM Model Supported by Lidar. Zhang J; Zhao Z; Yan J; Cheng P Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177571 [TBL] [Abstract][Full Text] [Related]
17. Short-term wind power forecasting through stacked and bi directional LSTM techniques. Ali Khan M; Khan IA; Shah S; El-Affendi M; Jadoon W PeerJ Comput Sci; 2024; 10():e1949. PubMed ID: 38660151 [TBL] [Abstract][Full Text] [Related]
18. A hybrid approach for short-term forecasting of wind speed. Tatinati S; Veluvolu KC ScientificWorldJournal; 2013; 2013():548370. PubMed ID: 24453872 [TBL] [Abstract][Full Text] [Related]
19. A novel model for runoff prediction based on the ICEEMDAN-NGO-LSTM coupling. Yang C; Jiang Y; Liu Y; Liu S; Liu F Environ Sci Pollut Res Int; 2023 Jul; 30(34):82179-82188. PubMed ID: 37318729 [TBL] [Abstract][Full Text] [Related]
20. Feature selection in wind speed forecasting systems based on meta-heuristic optimization. El-Kenawy EM; Mirjalili S; Khodadadi N; Abdelhamid AA; Eid MM; El-Said M; Ibrahim A PLoS One; 2023; 18(2):e0278491. PubMed ID: 36749744 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]