BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 36602956)

  • 1. Application of sequential cyclic compression on cancer cells in a flexible microdevice.
    Onal S; Alkaisi MM; Nock V
    PLoS One; 2023; 18(1):e0279896. PubMed ID: 36602956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single cell active force generation under dynamic loading - Part I: AFM experiments.
    Weafer PP; Reynolds NH; Jarvis SP; McGarry JP
    Acta Biomater; 2015 Nov; 27():236-250. PubMed ID: 26360596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlating nuclear morphology and external force with combined atomic force microscopy and light sheet imaging separates roles of chromatin and lamin A/C in nuclear mechanics.
    Hobson CM; Kern M; O'Brien ET; Stephens AD; Falvo MR; Superfine R
    Mol Biol Cell; 2020 Jul; 31(16):1788-1801. PubMed ID: 32267206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic biophysical responses of neuronal cell nuclei and cytoskeletal structure following high impulse loading.
    Schneider SE; Scott AK; Seelbinder B; Elzen CVD; Wilson RL; Miller EY; Beato QI; Ghosh S; Barthold JE; Bilyeu J; Emery NC; Pierce DM; Neu CP
    Acta Biomater; 2023 Jun; 163():339-350. PubMed ID: 35811070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single cell active force generation under dynamic loading - Part II: Active modelling insights.
    Reynolds NH; McGarry JP
    Acta Biomater; 2015 Nov; 27():251-263. PubMed ID: 26360595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advanced Microfluidic Device Designed for Cyclic Compression of Single Adherent Cells.
    Ho KKY; Wang YL; Wu J; Liu AP
    Front Bioeng Biotechnol; 2018; 6():148. PubMed ID: 30386779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cyclic stretch-induced mechanical stress to the cell nucleus inhibits ultraviolet radiation-induced DNA damage.
    Nagayama K; Fukuei T
    Biomech Model Mechanobiol; 2020 Apr; 19(2):493-504. PubMed ID: 31506862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing multi-scale mechanics of peripheral nerve collagen and myelin by X-ray diffraction.
    Bianchi F; Hofmann F; Smith AJ; Ye H; Thompson MS
    J Mech Behav Biomed Mater; 2018 Nov; 87():205-212. PubMed ID: 30077812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Remodeling of actin cytoskeleton in mouse periosteal cells under mechanical loading induces periosteal cell proliferation during bone formation.
    Sakai D; Kii I; Nakagawa K; Matsumoto HN; Takahashi M; Yoshida S; Hosoya T; Takakuda K; Kudo A
    PLoS One; 2011; 6(9):e24847. PubMed ID: 21935480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of the mechanical behavior of chondrocytes in unconfined compression tests for cyclic loading.
    Wu JZ; Herzog W
    J Biomech; 2006; 39(4):603-16. PubMed ID: 16439231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Force transduction and strain dynamics in actin stress fibres in response to nanonewton forces.
    Guolla L; Bertrand M; Haase K; Pelling AE
    J Cell Sci; 2012 Feb; 125(Pt 3):603-13. PubMed ID: 22389400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical stability of the cell nucleus - roles played by the cytoskeleton in nuclear deformation and strain recovery.
    Wang X; Liu H; Zhu M; Cao C; Xu Z; Tsatskis Y; Lau K; Kuok C; Filleter T; McNeill H; Simmons CA; Hopyan S; Sun Y
    J Cell Sci; 2018 Jul; 131(13):. PubMed ID: 29777038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell death induced by mechanical compression on engineered muscle results from a gradual physiological mechanism.
    Wu Y; van der Schaft DWJ; Baaijens FP; Oomens CWJ
    J Biomech; 2016 May; 49(7):1071-1077. PubMed ID: 26961799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measuring nucleus mechanics within a living multicellular organism: Physical decoupling and attenuated recovery rate are physiological protective mechanisms of the cell nucleus under high mechanical load.
    Zuela-Sopilniak N; Bar-Sela D; Charar C; Wintner O; Gruenbaum Y; Buxboim A
    Mol Biol Cell; 2020 Aug; 31(17):1943-1950. PubMed ID: 32583745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Finite Element Bendo-Tensegrity Model of Eukaryotic Cell.
    Bansod YD; Matsumoto T; Nagayama K; Bursa J
    J Biomech Eng; 2018 Oct; 140(10):. PubMed ID: 30029237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational investigation of in situ chondrocyte deformation and actin cytoskeleton remodelling under physiological loading.
    Dowling EP; Ronan W; McGarry JP
    Acta Biomater; 2013 Apr; 9(4):5943-55. PubMed ID: 23271042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Force-dependent activation of actin elongation factor mDia1 protects the cytoskeleton from mechanical damage and promotes stress fiber repair.
    Valencia FR; Sandoval E; Du J; Iu E; Liu J; Plotnikov SV
    Dev Cell; 2021 Dec; 56(23):3288-3302.e5. PubMed ID: 34822787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental and computational investigation of the role of stress fiber contractility in the resistance of osteoblasts to compression.
    Weafer PP; Ronan W; Jarvis SP; McGarry JP
    Bull Math Biol; 2013 Aug; 75(8):1284-303. PubMed ID: 23354930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shear Stress Modulates Osteoblast Cell and Nucleus Morphology and Volume.
    Jin J; Jaspers RT; Wu G; Korfage JAM; Klein-Nulend J; Bakker AD
    Int J Mol Sci; 2020 Nov; 21(21):. PubMed ID: 33171812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Valve-based microfluidic compression platform: single axon injury and regrowth.
    Hosmane S; Fournier A; Wright R; Rajbhandari L; Siddique R; Yang IH; Ramesh KT; Venkatesan A; Thakor N
    Lab Chip; 2011 Nov; 11(22):3888-95. PubMed ID: 21975691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.