These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 36602956)
1. Application of sequential cyclic compression on cancer cells in a flexible microdevice. Onal S; Alkaisi MM; Nock V PLoS One; 2023; 18(1):e0279896. PubMed ID: 36602956 [TBL] [Abstract][Full Text] [Related]
2. Single cell active force generation under dynamic loading - Part I: AFM experiments. Weafer PP; Reynolds NH; Jarvis SP; McGarry JP Acta Biomater; 2015 Nov; 27():236-250. PubMed ID: 26360596 [TBL] [Abstract][Full Text] [Related]
3. Correlating nuclear morphology and external force with combined atomic force microscopy and light sheet imaging separates roles of chromatin and lamin A/C in nuclear mechanics. Hobson CM; Kern M; O'Brien ET; Stephens AD; Falvo MR; Superfine R Mol Biol Cell; 2020 Jul; 31(16):1788-1801. PubMed ID: 32267206 [TBL] [Abstract][Full Text] [Related]
4. Dynamic biophysical responses of neuronal cell nuclei and cytoskeletal structure following high impulse loading. Schneider SE; Scott AK; Seelbinder B; Elzen CVD; Wilson RL; Miller EY; Beato QI; Ghosh S; Barthold JE; Bilyeu J; Emery NC; Pierce DM; Neu CP Acta Biomater; 2023 Jun; 163():339-350. PubMed ID: 35811070 [TBL] [Abstract][Full Text] [Related]
5. Single cell active force generation under dynamic loading - Part II: Active modelling insights. Reynolds NH; McGarry JP Acta Biomater; 2015 Nov; 27():251-263. PubMed ID: 26360595 [TBL] [Abstract][Full Text] [Related]
6. Cyclic stretch-induced mechanical stress to the cell nucleus inhibits ultraviolet radiation-induced DNA damage. Nagayama K; Fukuei T Biomech Model Mechanobiol; 2020 Apr; 19(2):493-504. PubMed ID: 31506862 [TBL] [Abstract][Full Text] [Related]
7. Advanced Microfluidic Device Designed for Cyclic Compression of Single Adherent Cells. Ho KKY; Wang YL; Wu J; Liu AP Front Bioeng Biotechnol; 2018; 6():148. PubMed ID: 30386779 [TBL] [Abstract][Full Text] [Related]
8. Probing multi-scale mechanics of peripheral nerve collagen and myelin by X-ray diffraction. Bianchi F; Hofmann F; Smith AJ; Ye H; Thompson MS J Mech Behav Biomed Mater; 2018 Nov; 87():205-212. PubMed ID: 30077812 [TBL] [Abstract][Full Text] [Related]
9. Remodeling of actin cytoskeleton in mouse periosteal cells under mechanical loading induces periosteal cell proliferation during bone formation. Sakai D; Kii I; Nakagawa K; Matsumoto HN; Takahashi M; Yoshida S; Hosoya T; Takakuda K; Kudo A PLoS One; 2011; 6(9):e24847. PubMed ID: 21935480 [TBL] [Abstract][Full Text] [Related]
10. Analysis of the mechanical behavior of chondrocytes in unconfined compression tests for cyclic loading. Wu JZ; Herzog W J Biomech; 2006; 39(4):603-16. PubMed ID: 16439231 [TBL] [Abstract][Full Text] [Related]
11. Force transduction and strain dynamics in actin stress fibres in response to nanonewton forces. Guolla L; Bertrand M; Haase K; Pelling AE J Cell Sci; 2012 Feb; 125(Pt 3):603-13. PubMed ID: 22389400 [TBL] [Abstract][Full Text] [Related]
12. Mechanical stability of the cell nucleus - roles played by the cytoskeleton in nuclear deformation and strain recovery. Wang X; Liu H; Zhu M; Cao C; Xu Z; Tsatskis Y; Lau K; Kuok C; Filleter T; McNeill H; Simmons CA; Hopyan S; Sun Y J Cell Sci; 2018 Jul; 131(13):. PubMed ID: 29777038 [TBL] [Abstract][Full Text] [Related]
13. Cell death induced by mechanical compression on engineered muscle results from a gradual physiological mechanism. Wu Y; van der Schaft DWJ; Baaijens FP; Oomens CWJ J Biomech; 2016 May; 49(7):1071-1077. PubMed ID: 26961799 [TBL] [Abstract][Full Text] [Related]
14. Measuring nucleus mechanics within a living multicellular organism: Physical decoupling and attenuated recovery rate are physiological protective mechanisms of the cell nucleus under high mechanical load. Zuela-Sopilniak N; Bar-Sela D; Charar C; Wintner O; Gruenbaum Y; Buxboim A Mol Biol Cell; 2020 Aug; 31(17):1943-1950. PubMed ID: 32583745 [TBL] [Abstract][Full Text] [Related]
15. A Finite Element Bendo-Tensegrity Model of Eukaryotic Cell. Bansod YD; Matsumoto T; Nagayama K; Bursa J J Biomech Eng; 2018 Oct; 140(10):. PubMed ID: 30029237 [TBL] [Abstract][Full Text] [Related]
16. Computational investigation of in situ chondrocyte deformation and actin cytoskeleton remodelling under physiological loading. Dowling EP; Ronan W; McGarry JP Acta Biomater; 2013 Apr; 9(4):5943-55. PubMed ID: 23271042 [TBL] [Abstract][Full Text] [Related]
17. Force-dependent activation of actin elongation factor mDia1 protects the cytoskeleton from mechanical damage and promotes stress fiber repair. Valencia FR; Sandoval E; Du J; Iu E; Liu J; Plotnikov SV Dev Cell; 2021 Dec; 56(23):3288-3302.e5. PubMed ID: 34822787 [TBL] [Abstract][Full Text] [Related]
18. Experimental and computational investigation of the role of stress fiber contractility in the resistance of osteoblasts to compression. Weafer PP; Ronan W; Jarvis SP; McGarry JP Bull Math Biol; 2013 Aug; 75(8):1284-303. PubMed ID: 23354930 [TBL] [Abstract][Full Text] [Related]
19. Shear Stress Modulates Osteoblast Cell and Nucleus Morphology and Volume. Jin J; Jaspers RT; Wu G; Korfage JAM; Klein-Nulend J; Bakker AD Int J Mol Sci; 2020 Nov; 21(21):. PubMed ID: 33171812 [TBL] [Abstract][Full Text] [Related]