BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 36602956)

  • 21. Effects of oxidative stress-induced changes in the actin cytoskeletal structure on myoblast damage under compressive stress: confocal-based cell-specific finite element analysis.
    Yao Y; Lacroix D; Mak AF
    Biomech Model Mechanobiol; 2016 Dec; 15(6):1495-1508. PubMed ID: 26994918
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanical compression and hydrostatic pressure induce reversible changes in actin cytoskeletal organisation in chondrocytes in agarose.
    Knight MM; Toyoda T; Lee DA; Bader DL
    J Biomech; 2006; 39(8):1547-51. PubMed ID: 15985265
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanical Point Loading Induces Cortex Stiffening and Actin Reorganization.
    Hu J; Chen S; Hu W; Lü S; Long M
    Biophys J; 2019 Oct; 117(8):1405-1418. PubMed ID: 31585706
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cell-to-cell variability in deformations across compressed myoblasts.
    Slomka N; Gefen A
    J Biomech Eng; 2011 Aug; 133(8):081007. PubMed ID: 21950900
    [TBL] [Abstract][Full Text] [Related]  

  • 25. ACL graft compression: a method to allow reduced tunnel sizes in ACL reconstruction.
    Lord BR; Colaco HB; Gupte CM; Wilson AJ; Amis AA
    Knee Surg Sports Traumatol Arthrosc; 2018 Aug; 26(8):2430-2437. PubMed ID: 29623378
    [TBL] [Abstract][Full Text] [Related]  

  • 26. On the role of the actin cytoskeleton and nucleus in the biomechanical response of spread cells.
    Reynolds NH; Ronan W; Dowling EP; Owens P; McMeeking RM; McGarry JP
    Biomaterials; 2014 Apr; 35(13):4015-25. PubMed ID: 24529900
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Combining tensile testing and microscopy to address a diverse range of questions.
    Robinson S; Durand-Smet P
    J Microsc; 2020 Jun; 278(3):145-153. PubMed ID: 31943175
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cell and nucleus deformation in compressed chondrocyte-alginate constructs: temporal changes and calculation of cell modulus.
    Knight MM; van de Breevaart Bravenboer J; Lee DA; van Osch GJ; Weinans H; Bader DL
    Biochim Biophys Acta; 2002 Feb; 1570(1):1-8. PubMed ID: 11960682
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tensile force-induced cytoskeletal remodeling: Mechanics before chemistry.
    Li X; Ni Q; He X; Kong J; Lim SM; Papoian GA; Trzeciakowski JP; Trache A; Jiang Y
    PLoS Comput Biol; 2020 Jun; 16(6):e1007693. PubMed ID: 32520928
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Resiliency of the plasma membrane and actin cortex to large-scale deformation.
    Haase K; Pelling AE
    Cytoskeleton (Hoboken); 2013 Sep; 70(9):494-514. PubMed ID: 23929821
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of biomechanical properties of cells through dielectrophoresis-based cell stretching and actin cytoskeleton modeling.
    Bai G; Li Y; Chu HK; Wang K; Tan Q; Xiong J; Sun D
    Biomed Eng Online; 2017 Apr; 16(1):41. PubMed ID: 28376803
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanical interactions among cytoskeletal filaments.
    Wang N
    Hypertension; 1998 Jul; 32(1):162-5. PubMed ID: 9674654
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Shearing-Stretching Device That Can Apply Physiological Fluid Shear Stress and Cyclic Stretch Concurrently to Endothelial Cells.
    Meza D; Abejar L; Rubenstein DA; Yin W
    J Biomech Eng; 2016 Mar; 138(3):4032550. PubMed ID: 26810848
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Finite element analysis of the influence of cyclic strain on cells anchored to substrates with varying properties.
    Banerjee A; Khan MP; Barui A; Datta P; Chowdhury AR; Bhowmik K
    Med Biol Eng Comput; 2022 Jan; 60(1):171-187. PubMed ID: 34782982
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Changes in the intra- and extra-mechanical environment of the nucleus in Saos-2 osteoblastic cells during bone differentiation process: Nuclear shrinkage and stiffening in cell differentiation.
    Nagayama K; Kodama F; Wataya N; Sato A; Matsumoto T
    J Mech Behav Biomed Mater; 2023 Feb; 138():105630. PubMed ID: 36565693
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cytoskeleton and plasma-membrane damage resulting from exposure to sustained deformations: A review of the mechanobiology of chronic wounds.
    Gefen A; Weihs D
    Med Eng Phys; 2016 Sep; 38(9):828-33. PubMed ID: 27312660
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanical activation of cells induces chromatin remodeling preceding MKL nuclear transport.
    Iyer KV; Pulford S; Mogilner A; Shivashankar GV
    Biophys J; 2012 Oct; 103(7):1416-28. PubMed ID: 23062334
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular mechanism for direct actin force-sensing by α-catenin.
    Mei L; Espinosa de Los Reyes S; Reynolds MJ; Leicher R; Liu S; Alushin GM
    Elife; 2020 Sep; 9():. PubMed ID: 32969337
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanical transmission in a Pacinian corpuscle. An analysis and a theory.
    Loewenstein WR; Skalak R
    J Physiol; 1966 Jan; 182(2):346-78. PubMed ID: 5942033
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Decreased mechanical stiffness in LMNA-/- cells is caused by defective nucleo-cytoskeletal integrity: implications for the development of laminopathies.
    Broers JL; Peeters EA; Kuijpers HJ; Endert J; Bouten CV; Oomens CW; Baaijens FP; Ramaekers FC
    Hum Mol Genet; 2004 Nov; 13(21):2567-80. PubMed ID: 15367494
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.