These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 36603039)

  • 1. β-Bursts over Frontal Cortex Track the Surprise of Unexpected Events in Auditory, Visual, and Tactile Modalities.
    Tatz JR; Mather A; Wessel JR
    J Cogn Neurosci; 2023 Mar; 35(3):485-508. PubMed ID: 36603039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frontal cortex tracks surprise separately for different sensory modalities but engages a common inhibitory control mechanism.
    Wessel JR; Huber DE
    PLoS Comput Biol; 2019 Jul; 15(7):e1006927. PubMed ID: 31356593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. β-Bursts Reveal the Trial-to-Trial Dynamics of Movement Initiation and Cancellation.
    Wessel JR
    J Neurosci; 2020 Jan; 40(2):411-423. PubMed ID: 31748375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissociation of Medial Frontal β-Bursts and Executive Control.
    Errington SP; Woodman GF; Schall JD
    J Neurosci; 2020 Nov; 40(48):9272-9282. PubMed ID: 33097634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surprise About Sensory Event Timing Drives Cortical Transients in the Beta Frequency Band.
    Meindertsma T; Kloosterman NA; Engel AK; Wagenmakers EJ; Donner TH
    J Neurosci; 2018 Aug; 38(35):7600-7610. PubMed ID: 30030396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Establishing a Right Frontal Beta Signature for Stopping Action in Scalp EEG: Implications for Testing Inhibitory Control in Other Task Contexts.
    Wagner J; Wessel JR; Ghahremani A; Aron AR
    J Cogn Neurosci; 2018 Jan; 30(1):107-118. PubMed ID: 28880766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trial-by-trial surprise-decoding model for visual and auditory binary oddball tasks.
    Modirshanechi A; Kiani MM; Aghajan H
    Neuroimage; 2019 Aug; 196():302-317. PubMed ID: 30980899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Timing-dependent differential effects of unexpected events on error processing reveal the interactive dynamics of surprise and error processing.
    Guan Y; Wessel JR
    Psychophysiology; 2021 Dec; 58(12):e13922. PubMed ID: 34383331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectral-temporal EEG dynamics of speech discrimination processing in infants during sleep.
    Gilley PM; Uhler K; Watson K; Yoshinaga-Itano C
    BMC Neurosci; 2017 Mar; 18(1):34. PubMed ID: 28330464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An information theory account of late frontoparietal ERP positivities in cognitive control.
    Barceló F; Cooper PS
    Psychophysiology; 2018 Mar; 55(3):. PubMed ID: 28295342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Background connectivity between frontal and sensory cortex depends on task state, independent of stimulus modality.
    Elkhetali AS; Fleming LL; Vaden RJ; Nenert R; Mendle JE; Visscher KM
    Neuroimage; 2019 Jan; 184():790-800. PubMed ID: 30237034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The neural signature of information regularity in temporally extended event sequences.
    Zhang J; Rowe JB
    Neuroimage; 2015 Feb; 107():266-276. PubMed ID: 25524648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensory-Biased and Multiple-Demand Processing in Human Lateral Frontal Cortex.
    Noyce AL; Cestero N; Michalka SW; Shinn-Cunningham BG; Somers DC
    J Neurosci; 2017 Sep; 37(36):8755-8766. PubMed ID: 28821668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Neural Mechanism for Surprise-related Interruptions of Visuospatial Working Memory.
    Wessel JR
    Cereb Cortex; 2018 Jan; 28(1):199-212. PubMed ID: 27909006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dose-dependent modulation of the visually evoked N1/N170 by perceptual surprise: a clear demonstration of prediction-error signalling.
    Robinson JE; Breakspear M; Young AW; Johnston PJ
    Eur J Neurosci; 2020 Dec; 52(11):4442-4452. PubMed ID: 29602233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissociation of temporal and frontal components in the human auditory N1 wave: a scalp current density and dipole model analysis.
    Giard MH; Perrin F; Echallier JF; Thévenet M; Froment JC; Pernier J
    Electroencephalogr Clin Neurophysiol; 1994 May; 92(3):238-52. PubMed ID: 7514993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact of motor activity on intracerebral ERPs: P3 latency variability in modified auditory odd-ball paradigms involving a motor task.
    Kanovský P; Streitová H; Klajblová H; Bares M; Daniel P; Rektor I
    Neurophysiol Clin; 2003 Sep; 33(4):159-68. PubMed ID: 14519543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Right Superior Frontal Gyrus and Individual Variation in Proactive Control of Impulsive Response.
    Hu S; Ide JS; Zhang S; Li CR
    J Neurosci; 2016 Dec; 36(50):12688-12696. PubMed ID: 27974616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Auditory and visual connectivity gradients in frontoparietal cortex.
    Braga RM; Hellyer PJ; Wise RJ; Leech R
    Hum Brain Mapp; 2017 Jan; 38(1):255-270. PubMed ID: 27571304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatiotemporal Signatures of Surprise Captured by Magnetoencephalography.
    Mousavi Z; Kiani MM; Aghajan H
    Front Syst Neurosci; 2022; 16():865453. PubMed ID: 35770244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.