These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. Expression and activity of soluble guanylate cyclase in injury and repair of anti-thy1 glomerulonephritis. Peters H; Wang Y; Loof T; Martini S; Kron S; Krämer S; Neumayer HH Kidney Int; 2004 Dec; 66(6):2224-36. PubMed ID: 15569311 [TBL] [Abstract][Full Text] [Related]
25. In vivo microdialysis study of a specific inhibitor of soluble guanylyl cyclase on the glutamate receptor/nitric oxide/cyclic GMP pathway. Fedele E; Jin Y; Varnier G; Raiteri M Br J Pharmacol; 1996 Oct; 119(3):590-4. PubMed ID: 8894183 [TBL] [Abstract][Full Text] [Related]
26. Human soluble guanylate cyclase as a nitric oxide sensor for NO-signalling reveals a novel function of nitrite reductase. Pan J; Xu Q; Lin YW; Zhong F; Tan X Chem Commun (Camb); 2013 Aug; 49(67):7454-6. PubMed ID: 23864033 [TBL] [Abstract][Full Text] [Related]
27. Current Modulation of Guanylate Cyclase Pathway Activity-Mechanism and Clinical Implications. Grześk G; Nowaczyk A Molecules; 2021 Jun; 26(11):. PubMed ID: 34200064 [TBL] [Abstract][Full Text] [Related]
28. Exploring New Cardiovascular Pathways: Are Soluble Guanylate Cyclase Stimulators the Right Direction? Michalak M; Armstrong PW Circ Heart Fail; 2018 Mar; 11(3):e004813. PubMed ID: 29545396 [No Abstract] [Full Text] [Related]
29. Dysfunctional nitric oxide signalling increases risk of myocardial infarction. Erdmann J; Stark K; Esslinger UB; Rumpf PM; Koesling D; de Wit C; Kaiser FJ; Braunholz D; Medack A; Fischer M; Zimmermann ME; Tennstedt S; Graf E; Eck S; Aherrahrou Z; Nahrstaedt J; Willenborg C; Bruse P; Brænne I; Nöthen MM; Hofmann P; Braund PS; Mergia E; Reinhard W; Burgdorf C; Schreiber S; Balmforth AJ; Hall AS; Bertram L; Steinhagen-Thiessen E; Li SC; März W; Reilly M; Kathiresan S; McPherson R; Walter U; ; Ott J; Samani NJ; Strom TM; Meitinger T; Hengstenberg C; Schunkert H Nature; 2013 Dec; 504(7480):432-6. PubMed ID: 24213632 [TBL] [Abstract][Full Text] [Related]
30. Soluble guanylate cyclase is required for systemic vasodilation but not positive inotropy induced by nitroxyl in the mouse. Zhu G; Groneberg D; Sikka G; Hori D; Ranek MJ; Nakamura T; Takimoto E; Paolocci N; Berkowitz DE; Friebe A; Kass DA Hypertension; 2015 Feb; 65(2):385-92. PubMed ID: 25452469 [TBL] [Abstract][Full Text] [Related]
31. Soluble guanylate cyclase stimulator riociguat improves spatial memory in mice via peripheral mechanisms. Nelissen E; van Hagen BTJ; Argyrousi EK; van Goethem NP; Heckman PRA; Paes D; Mulder-Jongen DAJ; Ramaekers JG; Blokland A; Schmidt HHHW; Prickaerts J Neurosci Lett; 2022 Sep; 788():136840. PubMed ID: 35985509 [TBL] [Abstract][Full Text] [Related]
32. Brain regional alterations in the modulation of the glutamate-nitric oxide-cGMP pathway in liver cirrhosis. Role of hyperammonemia and cell types involved. Rodrigo R; Felipo V Neurochem Int; 2006; 48(6-7):472-7. PubMed ID: 16517021 [TBL] [Abstract][Full Text] [Related]
33. A novel approach for the treatment of hypertension with the soluble guanylate cyclase stimulating drug. Chrysant SG Expert Opin Drug Saf; 2021 Jun; 20(6):635-640. PubMed ID: 33734912 [TBL] [Abstract][Full Text] [Related]
34. Vasomotor control in mice overexpressing human endothelial nitric oxide synthase. van Deel ED; Merkus D; van Haperen R; de Waard MC; de Crom R; Duncker DJ Am J Physiol Heart Circ Physiol; 2007 Aug; 293(2):H1144-53. PubMed ID: 17496213 [TBL] [Abstract][Full Text] [Related]
35. The vasorelaxant effects of 1-nitro-2-phenylethane involve stimulation of the soluble guanylate cyclase-cGMP pathway. Brito TS; Lima FJ; Aragão KS; de Siqueira RJ; Sousa PJ; Maia JG; Filho JD; Lahlou S; Magalhães PJ Biochem Pharmacol; 2013 Mar; 85(6):780-8. PubMed ID: 23270994 [TBL] [Abstract][Full Text] [Related]
36. Functional and biochemical analysis of endothelial (dys)function and NO/cGMP signaling in human blood vessels with and without nitroglycerin pretreatment. Schulz E; Tsilimingas N; Rinze R; Reiter B; Wendt M; Oelze M; Woelken-Weckmüller S; Walter U; Reichenspurner H; Meinertz T; Münzel T Circulation; 2002 Mar; 105(10):1170-5. PubMed ID: 11889009 [TBL] [Abstract][Full Text] [Related]
37. Mechanisms of relaxant activity of the nitric oxide-independent soluble guanylyl cyclase stimulator BAY 41-2272 in rat tracheal smooth muscle. Toque HA; Mónica FZ; Morganti RP; De Nucci G; Antunes E Eur J Pharmacol; 2010 Oct; 645(1-3):158-64. PubMed ID: 20670622 [TBL] [Abstract][Full Text] [Related]
38. Vas deferens smooth muscle responses to the nitric oxide-independent soluble guanylate cyclase stimulator BAY 41-2272. da Silva FH; Claudino MA; Báu FR; Rojas-Moscoso JA; Mónica FZ; De Nucci G; Antunes E Eur J Pharmacol; 2012 Aug; 688(1-3):49-55. PubMed ID: 22634166 [TBL] [Abstract][Full Text] [Related]
39. Alterations in the subcellular distribution of Guanylate cyclase and its responsiveness to nitric oxide in diethylstilbestrol-induced renal tumors. Braughler JM; Gilloteaux J; Steggles AW Cancer; 1982 Jul; 50(1):78-84. PubMed ID: 6123381 [TBL] [Abstract][Full Text] [Related]
40. Whole brain spheroid cultures as a model to study the development of nitric oxide synthase-guanylate cyclase signal transduction. Teunissen CE; Steinbusch HW; Markerink-van Ittersum M ; De Bruijn C ; Axer H; De Vente J Brain Res Dev Brain Res; 2000 Dec; 125(1-2):99-115. PubMed ID: 11154766 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]