These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 36603115)

  • 1. Ultraviolet Nanophotonics Enables Autofluorescence Correlation Spectroscopy on Label-Free Proteins with a Single Tryptophan.
    Roy P; Claude JB; Tiwari S; Barulin A; Wenger J
    Nano Lett; 2023 Jan; 23(2):497-504. PubMed ID: 36603115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultraviolet Resonant Nanogap Antennas with Rhodium Nanocube Dimers for Enhancing Protein Intrinsic Autofluorescence.
    Roy P; Zhu S; Claude JB; Liu J; Wenger J
    ACS Nano; 2023 Nov; 17(22):22418-22429. PubMed ID: 37931219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultraviolet Photostability Improvement for Autofluorescence Correlation Spectroscopy on Label-Free Proteins.
    Barulin A; Wenger J
    J Phys Chem Lett; 2020 Mar; 11(6):2027-2035. PubMed ID: 32083877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep Ultraviolet Plasmonic Enhancement of Single Protein Autofluorescence in Zero-Mode Waveguides.
    Barulin A; Claude JB; Patra S; Bonod N; Wenger J
    Nano Lett; 2019 Oct; 19(10):7434-7442. PubMed ID: 31526002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultraviolet optical horn antennas for label-free detection of single proteins.
    Barulin A; Roy P; Claude JB; Wenger J
    Nat Commun; 2022 Apr; 13(1):1842. PubMed ID: 35383189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Label-free detection of single protein molecules using deep UV fluorescence lifetime microscopy.
    Li Q; Seeger S
    Anal Chem; 2006 Apr; 78(8):2732-7. PubMed ID: 16615786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. UV-Fluorescence correlation spectroscopy of 2-aminopurine.
    Wennmalm S; Blom H; Wallerman L; Rigler R
    Biol Chem; 2001 Mar; 382(3):393-7. PubMed ID: 11347886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbonyl-based blue autofluorescence of proteins and amino acids.
    Niyangoda C; Miti T; Breydo L; Uversky V; Muschol M
    PLoS One; 2017; 12(5):e0176983. PubMed ID: 28542206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmonic antennas and zero-mode waveguides to enhance single molecule fluorescence detection and fluorescence correlation spectroscopy toward physiological concentrations.
    Punj D; Ghenuche P; Moparthi SB; de Torres J; Grigoriev V; Rigneault H; Wenger J
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2014; 6(3):268-82. PubMed ID: 24616447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing nonenzymatic glycation of proteins by deep ultraviolet light emitting diode induced autofluorescence.
    Mukunda DC; Joshi VK; Chandra S; Siddaramaiah M; Rodrigues J; Gadag S; Nayak UY; Mazumder N; Satyamoorthy K; Mahato KK
    Int J Biol Macromol; 2022 Jul; 213():279-296. PubMed ID: 35654218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of three-photon excitation FCS to the study of protein oligomerization.
    Ranjit S; Dvornikov A; Holland DA; Reinhart GD; Jameson DM; Gratton E
    J Phys Chem B; 2014 Dec; 118(50):14627-31. PubMed ID: 25438088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein aggregation probed by two-photon fluorescence correlation spectroscopy of native tryptophan.
    Sahoo B; Balaji J; Nag S; Kaushalya SK; Maiti S
    J Chem Phys; 2008 Aug; 129(7):075103. PubMed ID: 19044804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aluminum nanoparticles as substrates for metal-enhanced fluorescence in the ultraviolet for the label-free detection of biomolecules.
    Chowdhury MH; Ray K; Gray SK; Pond J; Lakowicz JR
    Anal Chem; 2009 Feb; 81(4):1397-403. PubMed ID: 19159327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of the very efficient quenching of tryptophan fluorescence in human gamma D- and gamma S-crystallins: the gamma-crystallin fold may have evolved to protect tryptophan residues from ultraviolet photodamage.
    Chen J; Callis PR; King J
    Biochemistry; 2009 May; 48(17):3708-16. PubMed ID: 19358562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-color two-photon excitation of intrinsic protein fluorescence: label-free observation of proteolytic digestion of bovine serum albumin.
    Quentmeier S; Quentmeier CC; Walla PJ; Gericke KH
    Chemphyschem; 2009 Jul; 10(9-10):1607-13. PubMed ID: 19156800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The potential of autofluorescence spectroscopy to detect human urinary tract infection.
    Perinchery SM; Kuzhiumparambil U; Vemulpad S; Goldys EM
    Talanta; 2010 Aug; 82(3):912-7. PubMed ID: 20678645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A tryptophan synchronous and normal fluorescence study on bacteria inactivation mechanism.
    Li R; Dhankhar D; Chen J; Cesario TC; Rentzepis PM
    Proc Natl Acad Sci U S A; 2019 Sep; 116(38):18822-18826. PubMed ID: 31481620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mass spectrometric analysis of a UV-cross-linked protein-DNA complex: tryptophans 54 and 88 of E. coli SSB cross-link to DNA.
    Steen H; Petersen J; Mann M; Jensen ON
    Protein Sci; 2001 Oct; 10(10):1989-2001. PubMed ID: 11567090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the autofluorescence of fingermarks.
    Lambrechts SA; van Dam A; de Vos J; van Weert A; Sijen T; Aalders MC
    Forensic Sci Int; 2012 Oct; 222(1-3):89-93. PubMed ID: 22658744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hands On: Using Tryptophan Fluorescence Spectroscopy to Study Protein Structure.
    Hellmann N; Schneider D
    Methods Mol Biol; 2019; 1958():379-401. PubMed ID: 30945230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.