These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 36603221)

  • 1. Making a case for endovascular approaches for neural recording and stimulation.
    Thielen B; Xu H; Fujii T; Rangwala SD; Jiang W; Lin M; Kammen A; Liu C; Selvan P; Song D; Mack WJ; Meng E
    J Neural Eng; 2023 Jan; 20(1):. PubMed ID: 36603221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Post-explant profiling of subcellular-scale carbon fiber intracortical electrodes and surrounding neurons enables modeling of recorded electrophysiology.
    Letner JG; Patel PR; Hsieh JC; Smith Flores IM; Della Valle E; Walker LA; Weiland JD; Chestek CA; Cai D
    J Neural Eng; 2023 Mar; 20(2):. PubMed ID: 36848679
    [No Abstract]   [Full Text] [Related]  

  • 3. Fluidic Microactuation of Flexible Electrodes for Neural Recording.
    Vitale F; Vercosa DG; Rodriguez AV; Pamulapati SS; Seibt F; Lewis E; Yan JS; Badhiwala K; Adnan M; Royer-Carfagni G; Beierlein M; Kemere C; Pasquali M; Robinson JT
    Nano Lett; 2018 Jan; 18(1):326-335. PubMed ID: 29220192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implantable Neural Microelectrodes: How to Reduce Immune Response.
    Xiang Y; Zhao Y; Cheng T; Sun S; Wang J; Pei R
    ACS Biomater Sci Eng; 2024 May; 10(5):2762-2783. PubMed ID: 38591141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances in conductive hydrogels for neural recording and stimulation.
    Dawit H; Zhao Y; Wang J; Pei R
    Biomater Sci; 2024 May; 12(11):2786-2800. PubMed ID: 38682423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A testbed for optimizing electrodes embedded in the skull or in artificial skull replacement pieces used after injury.
    Jiang J; Marathe AR; Keene JC; Taylor DM
    J Neurosci Methods; 2017 Feb; 277():21-29. PubMed ID: 27979758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aberrant accumulation of age- and disease-associated factors following neural probe implantation in a mouse model of Alzheimer's disease.
    Wellman SM; Coyne OA; Douglas MM; Kozai TDY
    J Neural Eng; 2023 Sep; 20(4):. PubMed ID: 37531953
    [No Abstract]   [Full Text] [Related]  

  • 8. The ultra-thin, minimally invasive surface electrode array NeuroWeb for probing neural activity.
    Lee JM; Pyo YW; Kim YJ; Hong JH; Jo Y; Choi W; Lin D; Park HG
    Nat Commun; 2023 Nov; 14(1):7088. PubMed ID: 37925553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Advancements in Graphene-Based Implantable Electrodes for Neural Recording/Stimulation.
    Alahi MEE; Rizu MI; Tina FW; Huang Z; Nag A; Afsarimanesh N
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexible, scalable, high channel count stereo-electrode for recording in the human brain.
    Lee K; Paulk AC; Ro YG; Cleary DR; Tonsfeldt KJ; Kfir Y; Pezaris JS; Tchoe Y; Lee J; Bourhis AM; Vatsyayan R; Martin JR; Russman SM; Yang JC; Baohan A; Richardson RM; Williams ZM; Fried SI; Hoi Sang U; Raslan AM; Ben-Haim S; Halgren E; Cash SS; Dayeh SA
    Nat Commun; 2024 Jan; 15(1):218. PubMed ID: 38233418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of optically controlled "living electrodes" with long-projecting axon tracts for a synaptic brain-machine interface.
    Adewole DO; Struzyna LA; Burrell JC; Harris JP; Nemes AD; Petrov D; Kraft RH; Chen HI; Serruya MD; Wolf JA; Cullen DK
    Sci Adv; 2021 Jan; 7(4):. PubMed ID: 33523957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gels, jets, mosquitoes, and magnets: a review of implantation strategies for soft neural probes.
    Apollo NV; Murphy B; Prezelski K; Driscoll N; Richardson AG; Lucas TH; Vitale F
    J Neural Eng; 2020 Sep; 17(4):041002. PubMed ID: 32759476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultraflexible Neural Electrodes for Long-Lasting Intracortical Recording.
    He F; Lycke R; Ganji M; Xie C; Luan L
    iScience; 2020 Aug; 23(8):101387. PubMed ID: 32745989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emerging Penetrating Neural Electrodes: In Pursuit of Large Scale and Longevity.
    Luan L; Yin R; Zhu H; Xie C
    Annu Rev Biomed Eng; 2023 Jun; 25():185-205. PubMed ID: 37289556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Over the Horizon: The Present and Future of Endovascular Neural Recording and Stimulation.
    Fan JZ; Lopez-Rivera V; Sheth SA
    Front Neurosci; 2020; 14():432. PubMed ID: 32435184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Longitudinal neural and vascular recovery following ultraflexible neural electrode implantation in aged mice.
    He F; Sun Y; Jin Y; Yin R; Zhu H; Rathore H; Xie C; Luan L
    Biomaterials; 2022 Dec; 291():121905. PubMed ID: 36403326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanorobot-based Direct Implantation of Flexible Neural Electrode for BCI.
    Li T; Jiang Y; Fu X; Sun Z; Yan Y; Li YF; Liu S
    IEEE Trans Biomed Eng; 2024 Jun; PP():. PubMed ID: 38913534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Researchers successfully engineer endovascular probes for brain recording at a microscopic scale.
    Han JJ
    Artif Organs; 2023 Oct; 47(10):1551-1552. PubMed ID: 37641465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuro-Nano Interfaces: Utilizing Nano-Coatings and Nanoparticles to Enable Next-Generation Electrophysiological Recording, Neural Stimulation, and Biochemical Modulation.
    Young AT; Cornwell N; Daniele MA
    Adv Funct Mater; 2018 Mar; 28(12):. PubMed ID: 33867903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Improved
    Gilmour A; Poole-Warren L; Green RA
    Front Neurosci; 2019; 13():1349. PubMed ID: 31920510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.