These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 36603253)

  • 41. KOH activation of wax gourd-derived carbon materials with high porosity and heteroatom content for aqueous or all-solid-state supercapacitors.
    Yu D; Ma Y; Chen M; Dong X
    J Colloid Interface Sci; 2019 Mar; 537():569-578. PubMed ID: 30471611
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A Study on Superior Mesoporous Activated Carbons for Ultra Power Density Supercapacitor from Biomass Precursors.
    Bang JH; Lee BH; Choi YC; Lee HM; Kim BJ
    Int J Mol Sci; 2022 Aug; 23(15):. PubMed ID: 35955672
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Converting biowaste corncob residue into high value added porous carbon for supercapacitor electrodes.
    Qu WH; Xu YY; Lu AH; Zhang XQ; Li WC
    Bioresour Technol; 2015 Aug; 189():285-291. PubMed ID: 25898091
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Transforming polystyrene waste into 3D hierarchically porous carbon for high-performance supercapacitors.
    Ma C; Min J; Gong J; Liu X; Mu X; Chen X; Tang T
    Chemosphere; 2020 Aug; 253():126755. PubMed ID: 32464775
    [TBL] [Abstract][Full Text] [Related]  

  • 45. N-Doped Mesoporous Carbon Prepared from a Polybenzoxazine Precursor for High Performance Supercapacitors.
    Thirukumaran P; Atchudan R; Shakila Parveen A; Santhamoorthy M; Ramkumar V; Kim SC
    Polymers (Basel); 2021 Jun; 13(13):. PubMed ID: 34206681
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Humic acids-based hierarchical porous carbons as high-rate performance electrodes for symmetric supercapacitors.
    Qiao ZJ; Chen MM; Wang CY; Yuan YC
    Bioresour Technol; 2014 Jul; 163():386-9. PubMed ID: 24851713
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Yerba mate (Ilex paraguariensis) improves microcirculation of volunteers with high blood viscosity: a randomized, double-blind, placebo-controlled trial.
    Yu S; Yue Sw; Liu Z; Zhang T; Xiang N; Fu H
    Exp Gerontol; 2015 Feb; 62():14-22. PubMed ID: 25562195
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biopolymers-Derived Materials for Supercapacitors: Recent Trends, Challenges, and Future Prospects.
    Appiah ES; Dzikunu P; Mahadeen N; Ampong DN; Mensah-Darkwa K; Kumar A; Gupta RK; Adom-Asamoah M
    Molecules; 2022 Oct; 27(19):. PubMed ID: 36235093
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comparative Behavior of Viscose-Based Supercapacitor Electrodes Activated by KOH, H
    Breitenbach S; Duchoslav J; Mardare AI; Unterweger C; Stifter D; Hassel AW; Fürst C
    Nanomaterials (Basel); 2022 Feb; 12(4):. PubMed ID: 35215005
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors.
    Chen LF; Zhang XD; Liang HW; Kong M; Guan QF; Chen P; Wu ZY; Yu SH
    ACS Nano; 2012 Aug; 6(8):7092-102. PubMed ID: 22769051
    [TBL] [Abstract][Full Text] [Related]  

  • 51. 3 D Hierarchical Porous Carbon for Supercapacitors Prepared from Lignin through a Facile Template-Free Method.
    Zhang W; Lin H; Lin Z; Yin J; Lu H; Liu D; Zhao M
    ChemSusChem; 2015 Jun; 8(12):2114-22. PubMed ID: 26033894
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Pumpkin-Derived Porous Carbon for Supercapacitors with High Performance.
    Bai S; Tan G; Li X; Zhao Q; Meng Y; Wang Y; Zhang Y; Xiao D
    Chem Asian J; 2016 Jun; 11(12):1828-36. PubMed ID: 27124360
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Construction of high-energy-density supercapacitors from pine-cone-derived high-surface-area carbons.
    Karthikeyan K; Amaresh S; Lee SN; Sun X; Aravindan V; Lee YG; Lee YS
    ChemSusChem; 2014 May; 7(5):1435-42. PubMed ID: 24648276
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Promising porous carbon derived from celtuce leaves with outstanding supercapacitance and CO₂ capture performance.
    Wang R; Wang P; Yan X; Lang J; Peng C; Xue Q
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):5800-6. PubMed ID: 23098209
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Multiple-heteroatom doped porous carbons from self-activation of lignosulfonate with melamine for high performance supercapacitors.
    Li X; Zhang W; Wu M; Li S; Li X; Li Z
    Int J Biol Macromol; 2021 Jul; 183():950-961. PubMed ID: 33965494
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nitrogen doped hierarchical activated carbons derived from polyacrylonitrile fibers for CO
    Zheng L; Li WB; Chen JL
    RSC Adv; 2018 Aug; 8(52):29767-29774. PubMed ID: 35547272
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Activated Carbons From Winemaking Biowastes for Electrochemical Double-Layer Capacitors.
    Alcaraz L; Adán-Más A; Arévalo-Cid P; Montemor MF; López FA
    Front Chem; 2020; 8():686. PubMed ID: 32923425
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Chestnut-Derived Activated Carbon as a Prospective Material for Energy Storage.
    Januszewicz K; Cymann-Sachajdak A; Kazimierski P; Klein M; Łuczak J; Wilamowska-Zawłocka M
    Materials (Basel); 2020 Oct; 13(20):. PubMed ID: 33086654
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Exploring the genes of yerba mate (Ilex paraguariensis A. St.-Hil.) by NGS and de novo transcriptome assembly.
    Debat HJ; Grabiele M; Aguilera PM; Bubillo RE; Otegui MB; Ducasse DA; Zapata PD; Marti DA
    PLoS One; 2014; 9(10):e109835. PubMed ID: 25330175
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hierarchical Porous Heteroatoms-Co-Doped Activated Carbon Synthesized from Coconut Shell and Its Application for Supercapacitors.
    Liu R; Wang JX; Yang WD
    Nanomaterials (Basel); 2022 Oct; 12(19):. PubMed ID: 36234631
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.