BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 36603269)

  • 1. Assessing the environmental impact of resource recovery from dairy manure.
    Glover CJ; McDonnell A; Rollins KS; Hiibel SR; Cornejo PK
    J Environ Manage; 2023 Mar; 330():117150. PubMed ID: 36603269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitigating the environmental impacts of milk production via anaerobic digestion of manure: case study of a dairy farm in the Po Valley.
    Battini F; Agostini A; Boulamanti AK; Giuntoli J; Amaducci S
    Sci Total Environ; 2014 May; 481():196-208. PubMed ID: 24598150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Green cheese: partial life cycle assessment of greenhouse gas emissions and energy intensity of integrated dairy production and bioenergy systems.
    Aguirre-Villegas HA; Passos-Fonseca TH; Reinemann DJ; Armentano LE; Wattiaux MA; Cabrera VE; Norman JM; Larson R
    J Dairy Sci; 2015 Mar; 98(3):1571-92. PubMed ID: 25597974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feeding strategies and manure management for cost-effective mitigation of greenhouse gas emissions from dairy farms in Wisconsin.
    Dutreuil M; Wattiaux M; Hardie CA; Cabrera VE
    J Dairy Sci; 2014 Sep; 97(9):5904-17. PubMed ID: 24996278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmental implications of anaerobic digestion for manure management in dairy farms in Mexico: a life cycle perspective.
    Rivas-García P; Botello-Álvarez JE; Abel Seabra JE; da Silva Walter AC; Estrada-Baltazar A
    Environ Technol; 2015; 36(17):2198-209. PubMed ID: 25732709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmental and economic assessment of integrated systems for dairy manure treatment coupled with algae bioenergy production.
    Zhang Y; White MA; Colosi LM
    Bioresour Technol; 2013 Feb; 130():486-94. PubMed ID: 23313697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Grazing intensity affects the environmental impact of dairy systems.
    Aguirre-Villegas HA; Passos-Fonseca TH; Reinemann DJ; Larson R
    J Dairy Sci; 2017 Aug; 100(8):6804-6821. PubMed ID: 28601442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of farming strategies on environmental impact of intensive dairy farms in Italy.
    Guerci M; Bava L; Zucali M; Sandrucci A; Penati C; Tamburini A
    J Dairy Res; 2013 Aug; 80(3):300-8. PubMed ID: 23806128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nutrient recovery of the hydrothermal carbonization aqueous product from dairy manure using membrane distillation.
    Silva NA; Hiibel SR
    Environ Technol; 2023 Mar; 44(8):1135-1144. PubMed ID: 34704545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of nitrate and 3-nitrooxypropanol on the carbon footprints of milk from cattle produced in confined-feeding systems across regions in the United States: A life cycle analysis.
    Uddin ME; Tricarico JM; Kebreab E
    J Dairy Sci; 2022 Jun; 105(6):5074-5083. PubMed ID: 35346477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of improved performance in the U.S. dairy cattle industry on environmental impacts between 2007 and 2017.
    Capper JL; Cady RA
    J Anim Sci; 2020 Jan; 98(1):. PubMed ID: 31622980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Greenhouse gas, water, and land footprint per unit of production of the California dairy industry over 50 years.
    Naranjo A; Johnson A; Rossow H; Kebreab E
    J Dairy Sci; 2020 Apr; 103(4):3760-3773. PubMed ID: 32037166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrothermal carbonization of anaerobic digestate and manure from a dairy farm on energy recovery and the fate of nutrients.
    Belete YZ; Mau V; Yahav Spitzer R; Posmanik R; Jassby D; Iddya A; Kassem N; Tester JW; Gross A
    Bioresour Technol; 2021 Aug; 333():125164. PubMed ID: 33906016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The carbon footprint of integrated milk production and renewable energy systems - A case study.
    Vida E; Tedesco DEA
    Sci Total Environ; 2017 Dec; 609():1286-1294. PubMed ID: 28793397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A case study of the carbon footprint of milk from high-performing confinement and grass-based dairy farms.
    O'Brien D; Capper JL; Garnsworthy PC; Grainger C; Shalloo L
    J Dairy Sci; 2014 Mar; 97(3):1835-51. PubMed ID: 24440256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Factors affecting life cycle assessment of milk produced on 6 Mediterranean buffalo farms.
    Pirlo G; Carè S; Fantin V; Falconi F; Buttol P; Terzano GM; Masoni P; Pacelli C
    J Dairy Sci; 2014 Oct; 97(10):6583-93. PubMed ID: 25129494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of co-digestion on existing salt and nutrient mass balances for a full-scale dairy energy project.
    Camarillo MK; Stringfellow WT; Spier CL; Hanlon JS; Domen JK
    J Environ Manage; 2013 Oct; 128():233-42. PubMed ID: 23747374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increasing farm size is an effective way to decrease the carbon footprint in dairy cattle production.
    Aydin O; Koknaroglu H
    Trop Anim Health Prod; 2023 Nov; 55(6):421. PubMed ID: 38010571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Greenhouse gas emissions from dairy manure management in a Mediterranean environment.
    Owen JJ; Silver WL
    Ecol Appl; 2017 Mar; 27(2):545-559. PubMed ID: 27859918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Does increasing milk yield per cow reduce greenhouse gas emissions? A system approach.
    Zehetmeier M; Baudracco J; Hoffmann H; Heißenhuber A
    Animal; 2012 Jan; 6(1):154-66. PubMed ID: 22436163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.