These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 36603447)

  • 1. One-step separation of tin from e-waste by a chemical vapor transport process (CVT): Preparation of nano-SnO
    Su Z; Hou W; Wang J; Zhang Y; Jiang T
    Waste Manag; 2023 Feb; 157():330-338. PubMed ID: 36603447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation mechanisms of Fe
    Su Z; Zhang Y; Liu B; Chen Y; Li G; Jiang T
    Sci Rep; 2017 Mar; 7():43463. PubMed ID: 28262673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sn separation from Sn-bearing iron concentrates by roasting with waste tire rubber in N
    Yu Y; Li L; Wang J; Wang J; Li K
    J Hazard Mater; 2019 Jun; 371():440-448. PubMed ID: 30875571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recovery of tin from metal powders of waste printed circuit boards.
    Yang T; Zhu P; Liu W; Chen L; Zhang D
    Waste Manag; 2017 Oct; 68():449-457. PubMed ID: 28642077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Separating and recycling metal mixture of pyrolyzed waste printed circuit boards by a combined method.
    Chen B; He J; Sun X; Zhao J; Jiang H; Zhang L
    Waste Manag; 2020 Apr; 107():113-120. PubMed ID: 32278216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sn recovery from a tin-bearing middling with a high iron content and the transformation behaviours of the associated As, Pb, and Zn.
    Yu Y; Li L; Wang J
    Sci Total Environ; 2020 Nov; 744():140863. PubMed ID: 32687998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recoveries of rare elements Ga, Ge, In and Sn from waste electric and electronic equipment through secondary copper smelting.
    Avarmaa K; Yliaho S; Taskinen P
    Waste Manag; 2018 Jan; 71():400-410. PubMed ID: 29032002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective thermal transformation of old computer printed circuit boards to Cu-Sn based alloy.
    Shokri A; Pahlevani F; Cole I; Sahajwalla V
    J Environ Manage; 2017 Sep; 199():7-12. PubMed ID: 28521210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leaching studies for tin recovery from waste e-scrap.
    Jha MK; Choubey PK; Jha AK; Kumari A; Lee JC; Kumar V; Jeong J
    Waste Manag; 2012 Oct; 32(10):1919-25. PubMed ID: 22647503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Economic evaluation of an electrochemical process for the recovery of metals from electronic waste.
    Diaz LA; Lister TE
    Waste Manag; 2018 Apr; 74():384-392. PubMed ID: 29229181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Separation of metals from Ni-Cu-Ag-Pd-Bi-Sn multi-metal system of e-waste by leaching and stepwise potential-controlled electrodeposition.
    Liu Y; Song Q; Zhang L; Xu Z
    J Hazard Mater; 2021 Apr; 408():124772. PubMed ID: 33388630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of copper rich metallic phases from waste printed circuit boards.
    Cayumil R; Khanna R; Ikram-Ul-Haq M; Rajarao R; Hill A; Sahajwalla V
    Waste Manag; 2014 Oct; 34(10):1783-92. PubMed ID: 25052340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Treatment of nanowaste via fast crystal growth: with recycling of nano-SnO2 from electroplating sludge as a study case.
    Zhuang Z; Xu X; Wang Y; Wang Y; Huang F; Lin Z
    J Hazard Mater; 2012 Apr; 211-212():414-9. PubMed ID: 21968119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recycling and reutilization of smelting dust as a secondary resource: A review.
    Liu X; Wu F; Qu G; Zhang T; He M
    J Environ Manage; 2023 Dec; 347():119228. PubMed ID: 37806275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Concentration of precious metals from waste printed circuit boards using supergravity separation.
    Meng L; Guo L; Zhong Y; Wang Z; Chen K; Guo Z
    Waste Manag; 2018 Dec; 82():147-155. PubMed ID: 30509576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. XPS, TDS, and AFM studies of surface chemistry and morphology of Ag-covered L-CVD SnO2 nanolayers.
    Kwoka M; Ottaviano L; Koscielniak P; Szuber J
    Nanoscale Res Lett; 2014; 9(1):260. PubMed ID: 24936162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmental and economic performance analysis of recycling waste printed circuit boards using life cycle assessment.
    Pokhrel P; Lin SL; Tsai CT
    J Environ Manage; 2020 Dec; 276():111276. PubMed ID: 32871467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An environmentally friendly ball milling process for recovery of valuable metals from e-waste scraps.
    Zhang ZY; Zhang FS; Yao T
    Waste Manag; 2017 Oct; 68():490-497. PubMed ID: 28743577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 1D Narrow-Bandgap Tin Oxide Materials: Systematic High-Resolution TEM and Raman Analysis.
    Manseki K; Vafaei S; Scott L; Hampton K; Hattori N; Ohira K; Prochotsky K; Jala S; Sugiura T
    Materials (Basel); 2023 Jun; 16(13):. PubMed ID: 37444853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recovery of metals and nonmetals from electronic waste by physical and chemical recycling processes.
    Kaya M
    Waste Manag; 2016 Nov; 57():64-90. PubMed ID: 27543174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.