These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 36603448)

  • 1. Valorization of Spent coffee Grounds: A sustainable resource for Bio-based phase change materials for thermal energy storage.
    Jin Ong P; Leow Y; Yun Debbie Soo X; Hui Chua M; Ni X; Suwardi A; Kiang Ivan Tan C; Zheng R; Wei F; Xu J; Jun Loh X; Kai D; Zhu Q
    Waste Manag; 2023 Feb; 157():339-347. PubMed ID: 36603448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Valorization of spent coffee grounds recycling as a potential alternative fuel resource in Turkey: An experimental study.
    Atabani AE; Mercimek SM; Arvindnarayan S; Shobana S; Kumar G; Cadir M; Al-Muhatseb AH
    J Air Waste Manag Assoc; 2018 Mar; 68(3):196-214. PubMed ID: 28829684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recycling of spent coffee grounds for useful extracts and green composites.
    Leow Y; Yew PYM; Chee PL; Loh XJ; Kai D
    RSC Adv; 2021 Jan; 11(5):2682-2692. PubMed ID: 35424216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unlocking the potential of spent coffee grounds via a comprehensive biorefinery approach: production of microbial oil and carotenoids under fed-batch fermentation.
    Anagnostopoulou E; Tsouko E; Maina S; Myrtsi ED; Haroutounian S; Papanikolaou S; Koutinas A
    Environ Sci Pollut Res Int; 2024 May; 31(24):35483-35497. PubMed ID: 38727974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polysaccharidic spent coffee grounds for silver nanoparticle immobilization as a green and highly efficient biocide.
    Chien HW; Kuo CJ; Kao LH; Lin GY; Chen PY
    Int J Biol Macromol; 2019 Nov; 140():168-176. PubMed ID: 31422193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spent coffee grounds as supporting materials to produce bio-composite PCM with natural waxes.
    Yoo J; Chang SJ; Wi S; Kim S
    Chemosphere; 2019 Nov; 235():626-635. PubMed ID: 31276875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spent Coffee Grounds Valorization in Biorefinery Context to Obtain Valuable Products Using Different Extraction Approaches and Solvents.
    Lauberts M; Mierina I; Pals M; Latheef MAA; Shishkin A
    Plants (Basel); 2022 Dec; 12(1):. PubMed ID: 36616167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spent coffee ground torrefaction for waste remediation and valorization.
    Lee KT; Shih YT; Rajendran S; Park YK; Chen WH
    Environ Pollut; 2023 May; 324():121330. PubMed ID: 36841419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Comparative Study on the Thermal Energy Storage Performance of Bio-Based and Paraffin-Based PCMs Using DSC Procedures.
    Sam MN; Caggiano A; Mankel C; Koenders E
    Materials (Basel); 2020 Apr; 13(7):. PubMed ID: 32260573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supercritical fluid extraction from spent coffee grounds and coffee husks: antioxidant activity and effect of operational variables on extract composition.
    Andrade KS; Gonçalvez RT; Maraschin M; Ribeiro-do-Valle RM; Martínez J; Ferreira SR
    Talanta; 2012 Jan; 88():544-52. PubMed ID: 22265539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coffee biowaste valorization within circular economy: an evaluation method of spent coffee grounds potentials for mortar production.
    La Scalia G; Saeli M; Miglietta PP; Micale R
    Int J Life Cycle Assess; 2021; 26(9):1805-1815. PubMed ID: 34566270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep eutectic solvent-based valorization of spent coffee grounds.
    Yoo DE; Jeong KM; Han SY; Kim EM; Jin Y; Lee J
    Food Chem; 2018 Jul; 255():357-364. PubMed ID: 29571487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Eco-sustainable systems based on poly(lactic acid), diatomite and coffee grounds extract for food packaging.
    Cacciotti I; Mori S; Cherubini V; Nanni F
    Int J Biol Macromol; 2018 Jun; 112():567-575. PubMed ID: 29408420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of coffee oil-algae oil-based nanoemulsions and the study of their inhibition effect on UVA-induced skin damage in mice and melanoma cell growth.
    Yang CC; Hung CF; Chen BH
    Int J Nanomedicine; 2017; 12():6559-6580. PubMed ID: 28919754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of Spent Coffee Ground as Fiber Source on Chemical, Rheological and Sensory Properties of Sponge Cake.
    Hussein A; Ali H; Bareh G; Farouk A
    Pak J Biol Sci; 2019 Jan; 22(6):273-282. PubMed ID: 31930850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of biocomposite using coconut oil impregnated biochar as latent heat storage insulation.
    Jeon J; Park JH; Wi S; Yang S; Ok YS; Kim S
    Chemosphere; 2019 Dec; 236():124269. PubMed ID: 31319304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of high-temperature heating on composition and thermo-oxidative stability of the oil extracted from Arabica coffee beans.
    Raba DN; Chambre DR; Copolovici DM; Moldovan C; Copolovici LO
    PLoS One; 2018; 13(7):e0200314. PubMed ID: 29995918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spent coffee grounds: A sustainable approach toward novel perspectives of valorization.
    Bijla L; Aissa R; Laknifli A; Bouyahya A; Harhar H; Gharby S
    J Food Biochem; 2022 Aug; 46(8):e14190. PubMed ID: 35553079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of Unripe and Mature Avocado Seed Oil in Different Proportions as Phase Change Materials and Simulation of Their Cooling Storage.
    Reyes-Cueva E; Nicolalde JF; Martínez-Gómez J
    Molecules; 2020 Dec; 26(1):. PubMed ID: 33383631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of solid-state fermentation process of spent coffee grounds for the differentiated obtaining of chlorogenic, quinic, and caffeic acids.
    Arancibia-Díaz A; Astudillo-Castro C; Altamirano C; Soto-Maldonado C; Vergara-Castro M; Córdova A; Zúñiga-Hansen ME
    J Sci Food Agric; 2023 Jan; 103(1):420-427. PubMed ID: 36373791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.