These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 36603519)

  • 1. Evolution of 3D chromatin organization at different scales.
    Acemel RD; Lupiáñez DG
    Curr Opin Genet Dev; 2023 Feb; 78():102019. PubMed ID: 36603519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D genome evolution and reorganization in the Drosophila melanogaster species group.
    Torosin NS; Anand A; Golla TR; Cao W; Ellison CE
    PLoS Genet; 2020 Dec; 16(12):e1009229. PubMed ID: 33284803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolutionary stability of topologically associating domains is associated with conserved gene regulation.
    Krefting J; Andrade-Navarro MA; Ibn-Salem J
    BMC Biol; 2018 Aug; 16(1):87. PubMed ID: 30086749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mode and Tempo of 3D Genome Evolution in Drosophila.
    Torosin NS; Golla TR; Lawlor MA; Cao W; Ellison CE
    Mol Biol Evol; 2022 Nov; 39(11):. PubMed ID: 36201625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 5C analysis of the Epidermal Differentiation Complex locus reveals distinct chromatin interaction networks between gene-rich and gene-poor TADs in skin epithelial cells.
    Poterlowicz K; Yarker JL; Malashchuk I; Lajoie BR; Mardaryev AN; Gdula MR; Sharov AA; Kohwi-Shigematsu T; Botchkarev VA; Fessing MY
    PLoS Genet; 2017 Sep; 13(9):e1006966. PubMed ID: 28863138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of new chromatin domains determines pathogenicity of genomic duplications.
    Franke M; Ibrahim DM; Andrey G; Schwarzer W; Heinrich V; Schöpflin R; Kraft K; Kempfer R; Jerković I; Chan WL; Spielmann M; Timmermann B; Wittler L; Kurth I; Cambiaso P; Zuffardi O; Houge G; Lambie L; Brancati F; Pombo A; Vingron M; Spitz F; Mundlos S
    Nature; 2016 Oct; 538(7624):265-269. PubMed ID: 27706140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Topologically associated domains: a successful scaffold for the evolution of gene regulation in animals.
    Acemel RD; Maeso I; Gómez-Skarmeta JL
    Wiley Interdiscip Rev Dev Biol; 2017 May; 6(3):. PubMed ID: 28251841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Active chromatin and transcription play a key role in chromosome partitioning into topologically associating domains.
    Ulianov SV; Khrameeva EE; Gavrilov AA; Flyamer IM; Kos P; Mikhaleva EA; Penin AA; Logacheva MD; Imakaev MV; Chertovich A; Gelfand MS; Shevelyov YY; Razin SV
    Genome Res; 2016 Jan; 26(1):70-84. PubMed ID: 26518482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolutionary analysis of gene ages across TADs associates chromatin topology with whole-genome duplications.
    James C; Trevisan-Herraz M; Juan D; Rico D
    Cell Rep; 2024 Apr; 43(4):113895. PubMed ID: 38517894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Topologically associating domains and their role in the evolution of genome structure and function in
    Liao Y; Zhang X; Chakraborty M; Emerson JJ
    Genome Res; 2021 Mar; 31(3):397-410. PubMed ID: 33563719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of transposable elements and distal enhancers to evolution of human-specific features of interphase chromatin architecture in embryonic stem cells.
    Glinsky GV
    Chromosome Res; 2018 Mar; 26(1-2):61-84. PubMed ID: 29335803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methods for the Analysis of Topologically Associating Domains (TADs).
    Zufferey M; Tavernari D; Ciriello G
    Methods Mol Biol; 2022; 2301():39-59. PubMed ID: 34415530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary dynamics of 3D genome architecture following polyploidization in cotton.
    Wang M; Wang P; Lin M; Ye Z; Li G; Tu L; Shen C; Li J; Yang Q; Zhang X
    Nat Plants; 2018 Feb; 4(2):90-97. PubMed ID: 29379149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Principles of genome folding into topologically associating domains.
    Szabo Q; Bantignies F; Cavalli G
    Sci Adv; 2019 Apr; 5(4):eaaw1668. PubMed ID: 30989119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of 3D chromatin domains in gene regulation: a multi-facetted view on genome organization.
    Ibrahim DM; Mundlos S
    Curr Opin Genet Dev; 2020 Apr; 61():1-8. PubMed ID: 32199341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TADKB: Family classification and a knowledge base of topologically associating domains.
    Liu T; Porter J; Zhao C; Zhu H; Wang N; Sun Z; Mo YY; Wang Z
    BMC Genomics; 2019 Mar; 20(1):217. PubMed ID: 30871473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TAD cliques predict key features of chromatin organization.
    Liyakat Ali TM; Brunet A; Collas P; Paulsen J
    BMC Genomics; 2021 Jul; 22(1):499. PubMed ID: 34217222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organizational principles of 3D genome architecture.
    Rowley MJ; Corces VG
    Nat Rev Genet; 2018 Dec; 19(12):789-800. PubMed ID: 30367165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Co-regulation of paralog genes in the three-dimensional chromatin architecture.
    Ibn-Salem J; Muro EM; Andrade-Navarro MA
    Nucleic Acids Res; 2017 Jan; 45(1):81-91. PubMed ID: 27634932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances in Chromatin Imaging at Kilobase-Scale Resolution.
    Boettiger A; Murphy S
    Trends Genet; 2020 Apr; 36(4):273-287. PubMed ID: 32007290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.