BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 36603671)

  • 1. Physiological relevance of in-vitro cell-nanoparticle interaction studies as a predictive tool in cancer nanomedicine research.
    Boinapalli Y; Shankar Pandey R; Singh Chauhan A; Sudheesh MS
    Int J Pharm; 2023 Feb; 632():122579. PubMed ID: 36603671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing the relevance of 3D cancer models in nanomedicine research.
    Leong DT; Ng KW
    Adv Drug Deliv Rev; 2014 Dec; 79-80():95-106. PubMed ID: 24996135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D tumor microtissues as an in vitro testing platform for microenvironmentally-triggered drug delivery systems.
    Brancato V; Gioiella F; Profeta M; Imparato G; Guarnieri D; Urciuolo F; Melone P; Netti PA
    Acta Biomater; 2017 Jul; 57():47-58. PubMed ID: 28483691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tumor-Acidity-Cleavable Maleic Acid Amide (TACMAA): A Powerful Tool for Designing Smart Nanoparticles To Overcome Delivery Barriers in Cancer Nanomedicine.
    Du JZ; Li HJ; Wang J
    Acc Chem Res; 2018 Nov; 51(11):2848-2856. PubMed ID: 30346728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanomedicine Strategies to Circumvent Intratumor Extracellular Matrix Barriers for Cancer Therapy.
    Xu X; Wu Y; Qian X; Wang Y; Wang J; Li J; Li Y; Zhang Z
    Adv Healthc Mater; 2022 Jan; 11(1):e2101428. PubMed ID: 34706400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multicellular 3D Models to Study Tumour-Stroma Interactions.
    Colombo E; Cattaneo MG
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33562840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nano-Bio Interactions in Cancer: From Therapeutics Delivery to Early Detection.
    Liu Y; Wang J; Xiong Q; Hornburg D; Tao W; Farokhzad OC
    Acc Chem Res; 2021 Jan; 54(2):291-301. PubMed ID: 33180454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of nanoparticle diffusion and uptake in three-dimensional cell cultures.
    Belli V; Guarnieri D; Biondi M; Della Sala F; Netti PA
    Colloids Surf B Biointerfaces; 2017 Jan; 149():7-15. PubMed ID: 27710850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AlgiMatrix™-Based 3D Cell Culture System as an In Vitro Tumor Model: An Important Tool in Cancer Research.
    Godugu C; Singh M
    Methods Mol Biol; 2016; 1379():117-28. PubMed ID: 26608295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D modeling in cancer studies.
    Atat OE; Farzaneh Z; Pourhamzeh M; Taki F; Abi-Habib R; Vosough M; El-Sibai M
    Hum Cell; 2022 Jan; 35(1):23-36. PubMed ID: 34761350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D bioprinted tumor model with extracellular matrix enhanced bioinks for nanoparticle evaluation.
    Chen Y; Xu L; Li W; Chen W; He Q; Zhang X; Tang J; Wang Y; Liu B; Liu J
    Biofabrication; 2022 Jan; 14(2):. PubMed ID: 34991080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium phosphate nanoparticle-mediated transfection in 2D and 3D mono- and co-culture cell models.
    Sokolova V; Rojas-Sánchez L; Białas N; Schulze N; Epple M
    Acta Biomater; 2019 Jan; 84():391-401. PubMed ID: 30503560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoparticle mediated cancer immunotherapy.
    Gupta J; Safdari HA; Hoque M
    Semin Cancer Biol; 2021 Feb; 69():307-324. PubMed ID: 32259643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tumor acidic environment directs nanoparticle impacts on cancer cells.
    Ghaemi B; Javad Hajipour M
    J Colloid Interface Sci; 2023 Mar; 634():684-692. PubMed ID: 36563425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficacy-shaping nanomedicine by loading Calcium Peroxide into Tumor Microenvironment-responsive Nanoparticles for the Antitumor Therapy of Prostate Cancer.
    Wu D; Zhu ZQ; Tang HX; Shi ZE; Kang J; Liu Q; Qi J
    Theranostics; 2020; 10(21):9808-9829. PubMed ID: 32863961
    [No Abstract]   [Full Text] [Related]  

  • 16. The Crown and the Scepter: Roles of the Protein Corona in Nanomedicine.
    Cai R; Chen C
    Adv Mater; 2019 Nov; 31(45):e1805740. PubMed ID: 30589115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An injectable and tumor-specific responsive hydrogel with tissue-adhesive and nanomedicine-releasing abilities for precise locoregional chemotherapy.
    Wu D; Shi X; Zhao F; Chilengue STF; Deng L; Dong A; Kong D; Wang W; Zhang J
    Acta Biomater; 2019 Sep; 96():123-136. PubMed ID: 31247382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of Nano-Bio Interactions within a Pancreatic Tumor Microenvironment for the Advancement of Nanomedicine in Cancer Treatment.
    Alhussan A; Bromma K; Bozdoğan EPD; Metcalfe A; Karasinska J; Beckham W; Alexander AS; Renouf DJ; Schaeffer DF; Chithrani DB
    Curr Oncol; 2021 May; 28(3):1962-1979. PubMed ID: 34073974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multicellular Tumor Spheroids (MCTS) as a 3D In Vitro Evaluation Tool of Nanoparticles.
    Lu H; Stenzel MH
    Small; 2018 Mar; 14(13):e1702858. PubMed ID: 29450963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication Method of a High-Density Co-Culture Tumor-Stroma Platform to Study Cancer Progression.
    Saini H; Nikkhah M
    Methods Mol Biol; 2021; 2258():241-255. PubMed ID: 33340365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.