BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 36603671)

  • 21. Enhanced uptake and transport of PLGA-modified nanoparticles in cervical cancer.
    Sims LB; Curtis LT; Frieboes HB; Steinbach-Rankins JM
    J Nanobiotechnology; 2016 Apr; 14():33. PubMed ID: 27102372
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Overcoming obstacles in the tumor microenvironment: Recent advancements in nanoparticle delivery for cancer theranostics.
    Overchuk M; Zheng G
    Biomaterials; 2018 Feb; 156():217-237. PubMed ID: 29207323
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tumor in 3D: In Vitro Complex Cellular Models to Improve Nanodrugs Cancer Therapy.
    Fernandes S; Cassani M; Pagliari S; Filipensky P; Cavalieri F; Forte G
    Curr Med Chem; 2020; 27(42):7234-7255. PubMed ID: 32586245
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tumor stroma-containing 3D spheroid arrays: A tool to study nanoparticle penetration.
    Priwitaningrum DL; Blondé JG; Sridhar A; van Baarlen J; Hennink WE; Storm G; Le Gac S; Prakash J
    J Control Release; 2016 Dec; 244(Pt B):257-268. PubMed ID: 27616660
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In Vitro Assays for Nanoparticle-Cancer Cell Interaction Studies.
    Bauleth-Ramos T; Sarmento B
    Adv Exp Med Biol; 2021; 1295():223-242. PubMed ID: 33543462
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Shape Effect of Nanoparticles on Tumor Penetration in Monolayers Versus Spheroids.
    Zhang L; Wang Y; Yang D; Huang W; Hao P; Feng S; Appelhans D; Zhang T; Zan X
    Mol Pharm; 2019 Jul; 16(7):2902-2911. PubMed ID: 31184906
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Meet me halfway: Are in vitro 3D cancer models on the way to replace in vivo models for nanomedicine development?
    Pozzi S; Scomparin A; Israeli Dangoor S; Rodriguez Ajamil D; Ofek P; Neufeld L; Krivitsky A; Vaskovich-Koubi D; Kleiner R; Dey P; Koshrovski-Michael S; Reisman N; Satchi-Fainaro R
    Adv Drug Deliv Rev; 2021 Aug; 175():113760. PubMed ID: 33838208
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 3D-3-culture: A tool to unveil macrophage plasticity in the tumour microenvironment.
    Rebelo SP; Pinto C; Martins TR; Harrer N; Estrada MF; Loza-Alvarez P; Cabeçadas J; Alves PM; Gualda EJ; Sommergruber W; Brito C
    Biomaterials; 2018 May; 163():185-197. PubMed ID: 29477032
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Extracellular matrix physical properties govern the diffusion of nanoparticles in tumor microenvironment.
    He X; Yang Y; Han Y; Cao C; Zhang Z; Li L; Xiao C; Guo H; Wang L; Han L; Qu Z; Liu N; Han S; Xu F
    Proc Natl Acad Sci U S A; 2023 Jan; 120(1):e2209260120. PubMed ID: 36574668
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Decrease of reactive oxygen species-related biomarkers in the tissue-mimic 3D spheroid culture of human lung cells exposed to zinc oxide nanoparticles.
    Kim E; Jeon WB; Kim S; Lee SK
    J Nanosci Nanotechnol; 2014 May; 14(5):3356-65. PubMed ID: 24734552
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 3D In Vitro Model (R)evolution: Unveiling Tumor-Stroma Interactions.
    Rodrigues J; Heinrich MA; Teixeira LM; Prakash J
    Trends Cancer; 2021 Mar; 7(3):249-264. PubMed ID: 33218948
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-resolution 3D visualization of nanomedicine distribution in tumors.
    Moss JI; Barjat H; Emmas SA; Strittmatter N; Maynard J; Goodwin RJA; Storm G; Lammers T; Puri S; Ashford MB; Barry ST
    Theranostics; 2020; 10(2):880-897. PubMed ID: 31903157
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Engineering Cellular Microenvironments with Photo- and Enzymatically Responsive Hydrogels: Toward Biomimetic 3D Cell Culture Models.
    Tam RY; Smith LJ; Shoichet MS
    Acc Chem Res; 2017 Apr; 50(4):703-713. PubMed ID: 28345876
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Flotillin-involved uptake of silica nanoparticles and responses of an alveolar-capillary barrier in vitro.
    Kasper J; Hermanns MI; Bantz C; Utech S; Koshkina O; Maskos M; Brochhausen C; Pohl C; Fuchs S; Unger RE; Kirkpatrick CJ
    Eur J Pharm Biopharm; 2013 Jun; 84(2):275-87. PubMed ID: 23183446
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Factors Influencing the Delivery Efficiency of Cancer Nanomedicines.
    Ullah R; Wazir J; Khan FU; Diallo MT; Ihsan AU; Mikrani R; Aquib M; Zhou X
    AAPS PharmSciTech; 2020 May; 21(4):132. PubMed ID: 32409932
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Three dimensional spheroid cell culture for nanoparticle safety testing.
    Sambale F; Lavrentieva A; Stahl F; Blume C; Stiesch M; Kasper C; Bahnemann D; Scheper T
    J Biotechnol; 2015 Jul; 205():120-9. PubMed ID: 25595712
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In Vitro and In Vivo Tumor Models for the Evaluation of Anticancer Nanoparticles.
    Abreu TR; Biscaia M; Gonçalves N; Fonseca NA; Moreira JN
    Adv Exp Med Biol; 2021; 1295():271-299. PubMed ID: 33543464
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Halfway between 2D and Animal Models: Are 3D Cultures the Ideal Tool to Study Cancer-Microenvironment Interactions?
    Hoarau-Véchot J; Rafii A; Touboul C; Pasquier J
    Int J Mol Sci; 2018 Jan; 19(1):. PubMed ID: 29346265
    [TBL] [Abstract][Full Text] [Related]  

  • 39. From Passive Targeting to Personalized Nanomedicine: Multidimensional Insights on Nanoparticles' Interaction with the Tumor Microenvironment.
    Sebak AA; El-Shenawy BM; El-Safy S; El-Shazly M
    Curr Pharm Biotechnol; 2021; 22(11):1444-1465. PubMed ID: 33308126
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tumor organoid models in precision medicine and investigating cancer-stromal interactions.
    Xu R; Zhou X; Wang S; Trinkle C
    Pharmacol Ther; 2021 Feb; 218():107668. PubMed ID: 32853629
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.