These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 36603705)

  • 41. Comparative metabolic network analysis of two xylose fermenting recombinant Saccharomyces cerevisiae strains.
    Grotkjaer T; Christakopoulos P; Nielsen J; Olsson L
    Metab Eng; 2005; 7(5-6):437-44. PubMed ID: 16140032
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Genome-based kinetic modeling of cytosolic glucose metabolism in industrially relevant cell lines: Saccharomyces cerevisiae and Chinese hamster ovary cells.
    Chen N; Koumpouras GC; Polizzi KM; Kontoravdi C
    Bioprocess Biosyst Eng; 2012 Aug; 35(6):1023-33. PubMed ID: 22286123
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Prediction of metabolic fluxes from gene expression data with Huber penalty convex optimization function.
    Zhang SW; Gou WL; Li Y
    Mol Biosyst; 2017 May; 13(5):901-909. PubMed ID: 28338129
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Metabolic-flux analysis of Saccharomyces cerevisiae CEN.PK113-7D based on mass isotopomer measurements of (13)C-labeled primary metabolites.
    van Winden WA; van Dam JC; Ras C; Kleijn RJ; Vinke JL; van Gulik WM; Heijnen JJ
    FEMS Yeast Res; 2005 Apr; 5(6-7):559-68. PubMed ID: 15780655
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Simulation and validation of modelled sphingolipid metabolism in Saccharomyces cerevisiae.
    Alvarez-Vasquez F; Sims KJ; Cowart LA; Okamoto Y; Voit EO; Hannun YA
    Nature; 2005 Jan; 433(7024):425-30. PubMed ID: 15674294
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints.
    Chakrabarti A; Miskovic L; Soh KC; Hatzimanikatis V
    Biotechnol J; 2013 Sep; 8(9):1043-57. PubMed ID: 23868566
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Web application for genetic modification flux with database to estimate metabolic fluxes of genetic mutants.
    Mohd Ali N; Tsuboi R; Matsumoto Y; Koishi D; Inoue K; Maeda K; Kurata H
    J Biosci Bioeng; 2016 Jul; 122(1):111-6. PubMed ID: 26777238
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Large-scale 13C-flux analysis reveals mechanistic principles of metabolic network robustness to null mutations in yeast.
    Blank LM; Kuepfer L; Sauer U
    Genome Biol; 2005; 6(6):R49. PubMed ID: 15960801
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Evaluation of predicted network modules in yeast metabolism using NMR-based metabolite profiling.
    Bundy JG; Papp B; Harmston R; Browne RA; Clayson EM; Burton N; Reece RJ; Oliver SG; Brindle KM
    Genome Res; 2007 Apr; 17(4):510-9. PubMed ID: 17339370
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Bridging the gap between gene expression and metabolic phenotype via kinetic models.
    Vital-Lopez FG; Wallqvist A; Reifman J
    BMC Syst Biol; 2013 Jul; 7():63. PubMed ID: 23875723
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Integrating Kinetic Model of E. coli with Genome Scale Metabolic Fluxes Overcomes Its Open System Problem and Reveals Bistability in Central Metabolism.
    Mannan AA; Toya Y; Shimizu K; McFadden J; Kierzek AM; Rocco A
    PLoS One; 2015; 10(10):e0139507. PubMed ID: 26469081
    [TBL] [Abstract][Full Text] [Related]  

  • 52.
    Yuzawa T; Shirai T; Orishimo R; Kawai K; Kondo A; Hirasawa T
    J Gen Appl Microbiol; 2021 Oct; 67(4):142-149. PubMed ID: 33967166
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Performance of the auxotrophic Saccharomyces cerevisiae BY4741 as host for the production of IL-1beta in aerated fed-batch reactor: role of ACA supplementation, strain viability, and maintenance energy.
    Paciello L; de Alteriis E; Mazzoni C; Palermo V; Zueco J; Parascandola P
    Microb Cell Fact; 2009 Dec; 8():70. PubMed ID: 20042083
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Investigating strain dependency in the production of aromatic compounds in Saccharomyces cerevisiae.
    Suástegui M; Guo W; Feng X; Shao Z
    Biotechnol Bioeng; 2016 Dec; 113(12):2676-2685. PubMed ID: 27317047
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Genetic determinants for enhanced glycerol growth of Saccharomyces cerevisiae.
    Swinnen S; Ho PW; Klein M; Nevoigt E
    Metab Eng; 2016 Jul; 36():68-79. PubMed ID: 26971668
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of pyruvate decarboxylase overproduction on flux distribution at the pyruvate branch point in Saccharomyces cerevisiae.
    van Hoek P; Flikweert MT; van der Aart QJ; Steensma HY; van Dijken JP; Pronk JT
    Appl Environ Microbiol; 1998 Jun; 64(6):2133-40. PubMed ID: 9603825
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Full-scale model of glycolysis in Saccharomyces cerevisiae.
    Hynne F; Danø S; Sørensen PG
    Biophys Chem; 2001 Dec; 94(1-2):121-63. PubMed ID: 11744196
    [TBL] [Abstract][Full Text] [Related]  

  • 58. iSCHRUNK--In Silico Approach to Characterization and Reduction of Uncertainty in the Kinetic Models of Genome-scale Metabolic Networks.
    Andreozzi S; Miskovic L; Hatzimanikatis V
    Metab Eng; 2016 Jan; 33():158-168. PubMed ID: 26474788
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Quantitative comparison of transient growth of Saccharomyces cerevisiae, Saccharomyces kluyveri, and Kluyveromyces lactis.
    Herwig C; Von Stockar U
    Biotechnol Bioeng; 2003 Mar; 81(7):837-47. PubMed ID: 12557317
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Applications of computational modeling in metabolic engineering of yeast.
    Kerkhoven EJ; Lahtvee PJ; Nielsen J
    FEMS Yeast Res; 2015 Feb; 15(1):1-13. PubMed ID: 25156867
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.