These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
62. Dynamic flux balancing elucidates NAD(P)H production as limiting response to furfural inhibition in Saccharomyces cerevisiae. Pornkamol U; Franzen CJ Biotechnol J; 2015 Aug; 10(8):1248-58. PubMed ID: 25880365 [TBL] [Abstract][Full Text] [Related]
63. Sampling the solution space in genome-scale metabolic networks reveals transcriptional regulation in key enzymes. Bordel S; Agren R; Nielsen J PLoS Comput Biol; 2010 Jul; 6(7):e1000859. PubMed ID: 20657658 [TBL] [Abstract][Full Text] [Related]
64. Effect of carbon source perturbations on transcriptional regulation of metabolic fluxes in Saccharomyces cerevisiae. Cakir T; Kirdar B; Onsan ZI; Ulgen KO; Nielsen J BMC Syst Biol; 2007 Mar; 1():18. PubMed ID: 17408508 [TBL] [Abstract][Full Text] [Related]
65. Lack of main K+ uptake systems in Saccharomyces cerevisiae cells affects yeast performance in both potassium-sufficient and potassium-limiting conditions. Navarrete C; Petrezsélyová S; Barreto L; Martínez JL; Zahrádka J; Ariño J; Sychrová H; Ramos J FEMS Yeast Res; 2010 Aug; 10(5):508-17. PubMed ID: 20491939 [TBL] [Abstract][Full Text] [Related]
66. Linking high-resolution metabolic flux phenotypes and transcriptional regulation in yeast modulated by the global regulator Gcn4p. Moxley JF; Jewett MC; Antoniewicz MR; Villas-Boas SG; Alper H; Wheeler RT; Tong L; Hinnebusch AG; Ideker T; Nielsen J; Stephanopoulos G Proc Natl Acad Sci U S A; 2009 Apr; 106(16):6477-82. PubMed ID: 19346491 [TBL] [Abstract][Full Text] [Related]
67. Tradeoff between enzyme and metabolite efficiency maintains metabolic homeostasis upon perturbations in enzyme capacity. Fendt SM; Buescher JM; Rudroff F; Picotti P; Zamboni N; Sauer U Mol Syst Biol; 2010 Apr; 6():356. PubMed ID: 20393576 [TBL] [Abstract][Full Text] [Related]
68. A structured, minimal parameter model of the central nitrogen metabolism in Saccharomyces cerevisiae: the prediction of the behavior of mutants. van Riel NA; Giuseppin ML; TerSchure EG; Verrips CT J Theor Biol; 1998 Apr; 191(4):397-414. PubMed ID: 9631574 [TBL] [Abstract][Full Text] [Related]
69. Uncertainty reduction in biochemical kinetic models: Enforcing desired model properties. Miskovic L; Béal J; Moret M; Hatzimanikatis V PLoS Comput Biol; 2019 Aug; 15(8):e1007242. PubMed ID: 31430276 [TBL] [Abstract][Full Text] [Related]
70. Strain engineering and metabolic flux analysis of a probiotic yeast Saccharomyces boulardii for metabolizing L-fucose, a mammalian mucin component. Kim J; Cheong YE; Yu S; Jin YS; Kim KH Microb Cell Fact; 2022 Oct; 21(1):204. PubMed ID: 36207743 [TBL] [Abstract][Full Text] [Related]
71. A design-build-test cycle using modeling and experiments reveals interdependencies between upper glycolysis and xylose uptake in recombinant Miskovic L; Alff-Tuomala S; Soh KC; Barth D; Salusjärvi L; Pitkänen JP; Ruohonen L; Penttilä M; Hatzimanikatis V Biotechnol Biofuels; 2017; 10():166. PubMed ID: 28674555 [TBL] [Abstract][Full Text] [Related]
72. ¹³C-based metabolic flux analysis of Saccharomyces cerevisiae with a reduced Crabtree effect. Kajihata S; Matsuda F; Yoshimi M; Hayakawa K; Furusawa C; Kanda A; Shimizu H J Biosci Bioeng; 2015 Aug; 120(2):140-4. PubMed ID: 25634548 [TBL] [Abstract][Full Text] [Related]
73. Dynamic 13C-labeling experiments prove important differences in protein turnover rate between two Saccharomyces cerevisiae strains. Hong KK; Hou J; Shoaie S; Nielsen J; Bordel S FEMS Yeast Res; 2012 Nov; 12(7):741-7. PubMed ID: 22716310 [TBL] [Abstract][Full Text] [Related]
74. An in vivo data-driven framework for classification and quantification of enzyme kinetics and determination of apparent thermodynamic data. Canelas AB; Ras C; ten Pierick A; van Gulik WM; Heijnen JJ Metab Eng; 2011 May; 13(3):294-306. PubMed ID: 21354323 [TBL] [Abstract][Full Text] [Related]
75. Mechanistic analysis of multi-omics datasets to generate kinetic parameters for constraint-based metabolic models. Cotten C; Reed JL BMC Bioinformatics; 2013 Jan; 14():32. PubMed ID: 23360254 [TBL] [Abstract][Full Text] [Related]
76. Analysis and prediction of the physiological effects of altered coenzyme specificity in xylose reductase and xylitol dehydrogenase during xylose fermentation by Saccharomyces cerevisiae. Krahulec S; Klimacek M; Nidetzky B J Biotechnol; 2012 Apr; 158(4):192-202. PubMed ID: 21903144 [TBL] [Abstract][Full Text] [Related]
77. Rapid and efficient galactose fermentation by engineered Saccharomyces cerevisiae. Quarterman J; Skerker JM; Feng X; Liu IY; Zhao H; Arkin AP; Jin YS J Biotechnol; 2016 Jul; 229():13-21. PubMed ID: 27140870 [TBL] [Abstract][Full Text] [Related]
78. Functional analysis of structural genes for NAD(+)-dependent formate dehydrogenase in Saccharomyces cerevisiae. Overkamp KM; Kötter P; van der Hoek R; Schoondermark-Stolk S; Luttik MA; van Dijken JP; Pronk JT Yeast; 2002 Apr; 19(6):509-20. PubMed ID: 11921099 [TBL] [Abstract][Full Text] [Related]
79. New experimental and theoretical tools for metabolic engineering of micro-organisms. Heijnen JJ Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(3a):11-30. PubMed ID: 15954559 [TBL] [Abstract][Full Text] [Related]
80. Towards a genome-scale kinetic model of cellular metabolism. Smallbone K; Simeonidis E; Swainston N; Mendes P BMC Syst Biol; 2010 Jan; 4():6. PubMed ID: 20109182 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]