These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
43. Multifunctional hydrogel based on dopamine-modified hyaluronic acid, gelatin and silver nanoparticles for promoting abdominal wall defect repair. Hu J; Tao M; Sun F; Chen C; Chen G; Wang G Int J Biol Macromol; 2022 Dec; 222(Pt A):55-64. PubMed ID: 36100003 [TBL] [Abstract][Full Text] [Related]
44. A Novel Conductive and Micropatterned PEG-Based Hydrogel Enabling the Topographical and Electrical Stimulation of Myoblasts. Gong HY; Park J; Kim W; Kim J; Lee JY; Koh WG ACS Appl Mater Interfaces; 2019 Dec; 11(51):47695-47706. PubMed ID: 31794187 [TBL] [Abstract][Full Text] [Related]
45. Myelin Sheath-Inspired Hydrogel Electrode for Artificial Skin and Physiological Monitoring. Liu C; Wang Y; Shi S; Zheng Y; Ye Z; Liao J; Sun Q; Dang B; Shen X ACS Nano; 2024 Oct; 18(40):27420-27432. PubMed ID: 39331416 [TBL] [Abstract][Full Text] [Related]
46. Hydrogel-Integrated Multimodal Response as a Wearable and Implantable Bidirectional Interface for Biosensor and Therapeutic Electrostimulation. Sun J; Wu X; Xiao J; Zhang Y; Ding J; Jiang J; Chen Z; Liu X; Wei D; Zhou L; Fan H ACS Appl Mater Interfaces; 2023 Feb; 15(4):5897-5909. PubMed ID: 36656061 [TBL] [Abstract][Full Text] [Related]
47. Recent Progress in Natural Biopolymers Conductive Hydrogels for Flexible Wearable Sensors and Energy Devices: Materials, Structures, and Performance. Cui C; Fu Q; Meng L; Hao S; Dai R; Yang J ACS Appl Bio Mater; 2021 Jan; 4(1):85-121. PubMed ID: 35014278 [TBL] [Abstract][Full Text] [Related]
48. Polymeric silk fibroin hydrogel as a conductive and multifunctional adhesive for durable skin and epidermal electronics. Fu F; Liu C; Jiang Z; Zhao Q; Shen A; Wu Y; Gu W Smart Med; 2024 Sep; 3(3):e20240027. PubMed ID: 39420950 [TBL] [Abstract][Full Text] [Related]
49. Bio-inspired adhesive and self-healing hydrogels as flexible strain sensors for monitoring human activities. Gao Z; Li Y; Shang X; Hu W; Gao G; Duan L Mater Sci Eng C Mater Biol Appl; 2020 Jan; 106():110168. PubMed ID: 31753382 [TBL] [Abstract][Full Text] [Related]
50. Versatile biomimetic conductive polypyrrole films doped with hyaluronic acid of different molecular weights. Kim S; Jang Y; Jang M; Lim A; Hardy JG; Park HS; Lee JY Acta Biomater; 2018 Oct; 80():258-268. PubMed ID: 30266636 [TBL] [Abstract][Full Text] [Related]
51. Highly Conductive and Stretchable Hydrogel Nanocomposite Using Whiskered Gold Nanosheets for Soft Bioelectronics. Lim C; Lee S; Kang H; Cho YS; Yeom DH; Sunwoo SH; Park C; Nam S; Kim JH; Lee SP; Kim DH; Hyeon T Adv Mater; 2024 Sep; 36(39):e2407931. PubMed ID: 39129342 [TBL] [Abstract][Full Text] [Related]
52. Low-impedance tissue-device interface using homogeneously conductive hydrogels chemically bonded to stretchable bioelectronics. Shin Y; Lee HS; Hong YJ; Sunwoo SH; Park OK; Choi SH; Kim DH; Lee S Sci Adv; 2024 Mar; 10(12):eadi7724. PubMed ID: 38507496 [TBL] [Abstract][Full Text] [Related]
53. Transparent, intrinsically stretchable cellulose nanofiber-mediated conductive hydrogel for strain and humidity sensing. Bian Z; Li Y; Sun H; Shi M; Zheng Y; Liu H; Liu C; Shen C Carbohydr Polym; 2023 Feb; 301(Pt A):120300. PubMed ID: 36436853 [TBL] [Abstract][Full Text] [Related]
54. Dopamine-Modified Hyaluronic Acid Hydrogel Adhesives with Fast-Forming and High Tissue Adhesion. Zhou D; Li S; Pei M; Yang H; Gu S; Tao Y; Ye D; Zhou Y; Xu W; Xiao P ACS Appl Mater Interfaces; 2020 Apr; 12(16):18225-18234. PubMed ID: 32227982 [TBL] [Abstract][Full Text] [Related]
55. Self-Healing, Stretchable, Biocompatible, and Conductive Alginate Hydrogels through Dynamic Covalent Bonds for Implantable Electronics. Choi Y; Park K; Choi H; Son D; Shin M Polymers (Basel); 2021 Apr; 13(7):. PubMed ID: 33918277 [TBL] [Abstract][Full Text] [Related]
56. Preparation of accelerated-wound-healing lignin/dopamine-based nano-Fe Lu G; Zhang L; Zhang Y; Wang J; Zhou X; Fang X; Ma Z Int J Biol Macromol; 2024 Sep; 280(Pt 3):135942. PubMed ID: 39322138 [TBL] [Abstract][Full Text] [Related]
57. Biodegradable and electroconductive poly(3,4-ethylenedioxythiophene)/carboxymethyl chitosan hydrogels for neural tissue engineering. Xu C; Guan S; Wang S; Gong W; Liu T; Ma X; Sun C Mater Sci Eng C Mater Biol Appl; 2018 Mar; 84():32-43. PubMed ID: 29519441 [TBL] [Abstract][Full Text] [Related]
58. Ultra-High Electrical Conductivity in Filler-Free Polymeric Hydrogels Toward Thermoelectrics and Electromagnetic Interference Shielding. Wang J; Li Q; Li K; Sun X; Wang Y; Zhuang T; Yan J; Wang H Adv Mater; 2022 Mar; 34(12):e2109904. PubMed ID: 35064696 [TBL] [Abstract][Full Text] [Related]
59. Balanced Coexistence of Reversible and Irreversible Covalent Bonds in a Conductive Triple Polymeric Network Enables Stretchable Hydrogels with High Toughness and Adhesiveness. Park K; Kang K; Kim J; Kim SD; Jin S; Shin M; Son D ACS Appl Mater Interfaces; 2022 Dec; 14(50):56395-56406. PubMed ID: 36484343 [TBL] [Abstract][Full Text] [Related]
60. Conductive Bioimprint Using Soft Lithography Technique Based on PEDOT:PSS for Biosensing. Abd Wahid NA; Hashemi A; Evans JJ; Alkaisi MM Bioengineering (Basel); 2021 Dec; 8(12):. PubMed ID: 34940357 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]