These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 36604079)

  • 21. Structure of aggregating kappa-carrageenan fractions studied by light scattering.
    Meunier V; Nicolai T; Durand D
    Int J Biol Macromol; 2001 Jan; 28(2):157-65. PubMed ID: 11164233
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The disordered conformation of kappa-carrageenan in solution as determined by NMR experiments and molecular modeling.
    Bosco M; Segre A; Miertus S; Cesàro A; Paoletti S
    Carbohydr Res; 2005 Apr; 340(5):943-58. PubMed ID: 15780259
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interaction-induced structural transformation of lysozyme and kappa-carrageenan in binary complexes.
    Makshakova ON; Bogdanova LR; Faizullin DA; Ermakova EA; Zuev YF; Sedov IA
    Carbohydr Polym; 2021 Jan; 252():117181. PubMed ID: 33183628
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Changes in the polyelectrolyte-amphiphile interaction due to helix-coil transition induced by specific counterions or variations in temperature.
    Caram-Lelham N; Sundelöf LO
    Biopolymers; 1996 Sep; 39(3):387-93. PubMed ID: 8756518
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Testing Classical Approach to Polymer Solutions on SAXS Data of λ-Carrageenan, κ-Carrageenan and Methylcellulose Systems.
    Cerar J; Jamnik A; Tomšič M
    Acta Chim Slov; 2015; 62(3):498-508. PubMed ID: 26454582
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparative studies on the conformational change and aggregation behavior of irradiated carrageenans and agar by dynamic light scattering.
    Abad L; Okabe S; Shibayama M; Kudo H; Saiki S; Aranilla C; Relleve L; de la Rosa A
    Int J Biol Macromol; 2008 Jan; 42(1):55-61. PubMed ID: 17977594
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Complexation of κ-carrageenan with gelatin in the aqueous phase analysed by
    Voron'ko NG; Derkach SR; Vovk MA; Tolstoy PM
    Carbohydr Polym; 2017 Aug; 169():117-126. PubMed ID: 28504127
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Unravelling secondary structure changes on individual anionic polysaccharide chains by atomic force microscopy.
    Schefer L; Adamcik J; Mezzenga R
    Angew Chem Int Ed Engl; 2014 May; 53(21):5376-9. PubMed ID: 24740853
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Coil-helix transition of iota-carrageenan as a function of chain regularity.
    van de Velde F; Rollema HS; Grinberg NV; Burova TV; Grinberg VY; Tromp RH
    Biopolymers; 2002 Nov; 65(4):299-312. PubMed ID: 12382290
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A thermoreversible double gel: characterization of a methylcellulose and kappa-carrageenan mixed system in water by SAXS, DSC and rheology.
    Tomsic M; Prossnigg F; Glatter O
    J Colloid Interface Sci; 2008 Jun; 322(1):41-50. PubMed ID: 18417143
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photon transmission study on conformational ordering of iota-carrageenan in CaCl2 solution.
    Kara S; Pekcan O
    J Biomol Struct Dyn; 2005 Jun; 22(6):747-54. PubMed ID: 15842179
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Formation of calcium-mediated junction zones at the onset of the sol-gel transition of commercial kappa-carrageenan solutions.
    Nickerson MT; Darvesh R; Paulson AT
    J Food Sci; 2010 Apr; 75(3):E153-6. PubMed ID: 20492288
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Association of κ-carrageenan subjected to deep alkaline hydrolysis.
    Gasilova ER; Aleksandrova GP; Vlasova EN; Baigildin VA
    Biopolymers; 2018 Sep; 109(9):e23236. PubMed ID: 30269339
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Organisation and association of kappa-carrageenan helices under different salt conditions.
    Piculell L; Borgström J; Chronakis IS; Quist PO; Viebke C
    Int J Biol Macromol; 1997 Aug; 21(1-2):141-53. PubMed ID: 9283029
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hybrid Methods for Modeling Protein Structures Using Molecular Dynamics Simulations and Small-Angle X-Ray Scattering Data.
    Ekimoto T; Ikeguchi M
    Adv Exp Med Biol; 2018; 1105():237-258. PubMed ID: 30617833
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamic light scattering studies of irradiated kappa carrageenan.
    Abad LV; Nasimova IR; Relleve LS; Aranilla CT; De la Rosa AM; Shibayama M
    Int J Biol Macromol; 2004 Apr; 34(1-2):81-8. PubMed ID: 15178013
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular Dynamics Simulations Combined with Nuclear Magnetic Resonance and/or Small-Angle X-ray Scattering Data for Characterizing Intrinsically Disordered Protein Conformational Ensembles.
    Chan-Yao-Chong M; Durand D; Ha-Duong T
    J Chem Inf Model; 2019 May; 59(5):1743-1758. PubMed ID: 30840442
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of calcium ions on the organization of iota-carrageenan helices: an X-ray investigation.
    Janaswamy S; Chandrasekaran R
    Carbohydr Res; 2002 Mar; 337(6):523-35. PubMed ID: 11890890
    [TBL] [Abstract][Full Text] [Related]  

  • 39. "Weak gel"-type rheological properties of aqueous dispersions of nonaggregated kappa-carrageenan helices.
    Ikeda S; Nishinari K
    J Agric Food Chem; 2001 Sep; 49(9):4436-41. PubMed ID: 11559151
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On the specific role of coions and counterions on kappa-carrageenan conformation.
    Ciancia M; Milas M; Rinaudo M
    Int J Biol Macromol; 1997 Feb; 20(1):35-41. PubMed ID: 9110183
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.