BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 36604306)

  • 1. Thermal Interface Materials with High Thermal Conductivity and Low Young's Modulus Using a Solid-Liquid Metal Codoping Strategy.
    Zhang XD; Zhang ZT; Wang HZ; Cao BY
    ACS Appl Mater Interfaces; 2023 Jan; 15(2):3534-3542. PubMed ID: 36604306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Dielectrophoretic Alignment of Biphasic Metal Fillers for Thermal Interface Materials.
    Lee Y; Akyildiz K; Kang C; So JH; Koo HJ
    Polymers (Basel); 2023 Dec; 15(24):. PubMed ID: 38139905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alveoli-Mimetic Synergistic Liquid and Solid Thermal Conductive Interface as a Novel Strategy for Designing High-Performance Thermal Interface Materials.
    Zheng S; Xue H; Liu Y; Yu X; Cao Z
    Small; 2024 Apr; 20(16):e2306750. PubMed ID: 38044278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultralow Interfacial Thermal Resistance of Graphene Thermal Interface Materials with Surface Metal Liquefaction.
    Dai W; Ren XJ; Yan Q; Wang S; Yang M; Lv L; Ying J; Chen L; Tao P; Sun L; Xue C; Yu J; Song C; Nishimura K; Jiang N; Lin CT
    Nanomicro Lett; 2022 Dec; 15(1):9. PubMed ID: 36484932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Liquid Metal Composites with Enhanced Thermal Conductivity and Stability Using Molecular Thermal Linker.
    Wang H; Xing W; Chen S; Song C; Dickey MD; Deng T
    Adv Mater; 2021 Oct; 33(43):e2103104. PubMed ID: 34510554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scalable Compliant Graphene Fiber-Based Thermal Interface Material with Metal-Level Thermal Conductivity via Dual-Field Synergistic Alignment Engineering.
    Lu J; Ming X; Cao M; Liu Y; Wang B; Shi H; Hao Y; Zhang P; Li K; Wang L; Li P; Gao W; Cai S; Sun B; Yu ZZ; Xu Z; Gao C
    ACS Nano; 2024 Jun; ():. PubMed ID: 38941591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing Thermal Transport in Silicone Composites via Bridging Liquid Metal Fillers with Reactive Metal Co-Fillers and Matrix Viscosity Tuning.
    Uppal A; Kong W; Rana A; Wang RY; Rykaczewski K
    ACS Appl Mater Interfaces; 2021 Sep; 13(36):43348-43355. PubMed ID: 34491735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Innocuous, Highly Conductive, and Affordable Thermal Interface Material with Copper-Based Multi-Dimensional Filler Design.
    Kim W; Kim C; Lee W; Park J; Kim D
    Biomolecules; 2021 Jan; 11(2):. PubMed ID: 33498514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Integrated Approach to Design and Develop High-Performance Polymer-Composite Thermal Interface Material.
    Akhtar SS
    Polymers (Basel); 2021 Mar; 13(5):. PubMed ID: 33800734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fillers and methods to improve the effective (out-plane) thermal conductivity of polymeric thermal interface materials - A review.
    Mumtaz N; Li Y; Artiaga R; Farooq Z; Mumtaz A; Guo Q; Nisa FU
    Heliyon; 2024 Feb; 10(3):e25381. PubMed ID: 38352797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvement of the Thermal Conductivity and Mechanical Properties of 3D-Printed Polyurethane Composites by Incorporating Hydroxylated Boron Nitride Functional Fillers.
    Su KH; Su CY; Shih WL; Lee FT
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and Thermomechanical Properties of Ketone Mesogenic Liquid Crystalline Epoxy Resin Composites with Functionalized Boron Nitride.
    Lin YS; Hsu SL; Ho TH; Jheng LC; Hsiao YH
    Polymers (Basel); 2020 Aug; 12(9):. PubMed ID: 32854322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Situ Alloying of Thermally Conductive Polymer Composites by Combining Liquid and Solid Metal Microadditives.
    Ralphs MI; Kemme N; Vartak PB; Joseph E; Tipnis S; Turnage S; Solanki KN; Wang RY; Rykaczewski K
    ACS Appl Mater Interfaces; 2018 Jan; 10(2):2083-2092. PubMed ID: 29235852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermally conductive and compliant polyurethane elastomer composites by constructing a tri-branched polymer network.
    Shi H; Zhou W; Wen Z; Wang W; Zeng X; Sun R; Ren L
    Mater Horiz; 2023 Mar; 10(3):928-937. PubMed ID: 36597840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical homogenization of thermal conductivity of particle-filled thermal interface material by fast Fourier transform method.
    Lu X; Fu X; Lu J; Sun R; Xu J; Yan C; Wong CP
    Nanotechnology; 2021 Apr; 32(26):. PubMed ID: 33652420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laminar Metal Foam: A Soft and Highly Thermally Conductive Thermal Interface Material with a Reliable Joint for Semiconductor Packaging.
    Liu P; Luo Y; Liu J; Chiang SW; Wu D; Dai W; Kang F; Lin W; Wong CP; Yang C
    ACS Appl Mater Interfaces; 2021 Apr; 13(13):15791-15801. PubMed ID: 33755413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomimetic Liquid Metal-Elastomer Composited Foam with Adjustable Thermal Conductivity for Heat Control.
    Tang H; Lü X; Meng X; Wang H; Bai G; Bao W
    Molecules; 2023 Feb; 28(4):. PubMed ID: 36838676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interfacial Coordination Interaction Enables Soft Elastomer Composites High Thermal Conductivity and High Toughness.
    He D; Wang Z; Zeng X; Fan J; Ren L; Du G; Sun R; Zeng X
    ACS Appl Mater Interfaces; 2022 Jul; ():. PubMed ID: 35849067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal-Level Thermally Conductive yet Soft Graphene Thermal Interface Materials.
    Dai W; Ma T; Yan Q; Gao J; Tan X; Lv L; Hou H; Wei Q; Yu J; Wu J; Yao Y; Du S; Sun R; Jiang N; Wang Y; Kong J; Wong C; Maruyama S; Lin CT
    ACS Nano; 2019 Oct; 13(10):11561-11571. PubMed ID: 31550125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High thermal conductivity in soft elastomers with elongated liquid metal inclusions.
    Bartlett MD; Kazem N; Powell-Palm MJ; Huang X; Sun W; Malen JA; Majidi C
    Proc Natl Acad Sci U S A; 2017 Feb; 114(9):2143-2148. PubMed ID: 28193902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.