These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 36604763)

  • 41. Lytic polysaccharide monooxygenases (LPMOs) facilitate cellulose nanofibrils production.
    Moreau C; Tapin-Lingua S; Grisel S; Gimbert I; Le Gall S; Meyer V; Petit-Conil M; Berrin JG; Cathala B; Villares A
    Biotechnol Biofuels; 2019; 12():156. PubMed ID: 31249619
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Characterization of an AA9 LPMO from Thielavia australiensis, TausLPMO9B, under industrially relevant lignocellulose saccharification conditions.
    Calderaro F; Keser M; Akeroyd M; Bevers LE; Eijsink VGH; Várnai A; van den Berg MA
    Biotechnol Biofuels; 2020 Nov; 13(1):195. PubMed ID: 33292403
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A novel cellulolytic/xylanolytic SbAA14 from Sordaria brevicollis with a branched chain preference and its synergistic effects with glycoside hydrolases on lignocellulose.
    Chen X; Zhang X; Zhao X; Zhang P; Long L; Ding S
    Int J Biol Macromol; 2024 Mar; 260(Pt 1):129504. PubMed ID: 38228212
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Substrate specificity and regioselectivity of fungal AA9 lytic polysaccharide monooxygenases secreted by Podospora anserina.
    Bennati-Granier C; Garajova S; Champion C; Grisel S; Haon M; Zhou S; Fanuel M; Ropartz D; Rogniaux H; Gimbert I; Record E; Berrin JG
    Biotechnol Biofuels; 2015; 8():90. PubMed ID: 26136828
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Investigating the role of AA9 LPMOs in enzymatic hydrolysis of differentially steam-pretreated spruce.
    Caputo F; Tõlgo M; Naidjonoka P; Krogh KBRM; Novy V; Olsson L
    Biotechnol Biofuels Bioprod; 2023 Apr; 16(1):68. PubMed ID: 37076886
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Laccase-derived lignin compounds boost cellulose oxidative enzymes AA9.
    Brenelli L; Squina FM; Felby C; Cannella D
    Biotechnol Biofuels; 2018; 11():10. PubMed ID: 29371886
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cellulose surface degradation by a lytic polysaccharide monooxygenase and its effect on cellulase hydrolytic efficiency.
    Eibinger M; Ganner T; Bubner P; Rošker S; Kracher D; Haltrich D; Ludwig R; Plank H; Nidetzky B
    J Biol Chem; 2014 Dec; 289(52):35929-38. PubMed ID: 25361767
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Enzymatic degradation of sulfite-pulped softwoods and the role of LPMOs.
    Chylenski P; Petrović DM; Müller G; Dahlström M; Bengtsson O; Lersch M; Siika-Aho M; Horn SJ; Eijsink VGH
    Biotechnol Biofuels; 2017; 10():177. PubMed ID: 28702082
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Identification and characterization of a novel AA9-type lytic polysaccharide monooxygenase from a bagasse metagenome.
    Bunterngsook B; Mhuantong W; Kanokratana P; Iseki Y; Watanabe T; Champreda V
    Appl Microbiol Biotechnol; 2021 Jan; 105(1):197-210. PubMed ID: 33230603
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A mini review of xylanolytic enzymes with regards to their synergistic interactions during hetero-xylan degradation.
    Malgas S; Mafa MS; Mkabayi L; Pletschke BI
    World J Microbiol Biotechnol; 2019 Nov; 35(12):187. PubMed ID: 31728656
    [TBL] [Abstract][Full Text] [Related]  

  • 51. FgLPMO9A from Fusarium graminearum cleaves xyloglucan independently of the backbone substitution pattern.
    Nekiunaite L; Petrović DM; Westereng B; Vaaje-Kolstad G; Hachem MA; Várnai A; Eijsink VG
    FEBS Lett; 2016 Oct; 590(19):3346-3356. PubMed ID: 27587308
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Action of lytic polysaccharide monooxygenase on plant tissue is governed by cellular type.
    Chabbert B; Habrant A; Herbaut M; Foulon L; Aguié-Béghin V; Garajova S; Grisel S; Bennati-Granier C; Gimbert-Herpoël I; Jamme F; Réfrégiers M; Sandt C; Berrin JG; Paës G
    Sci Rep; 2017 Dec; 7(1):17792. PubMed ID: 29259205
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Purification and characterization of a native lytic polysaccharide monooxygenase from Thermoascus aurantiacus.
    Fritsche S; Hopson C; Gorman J; Gabriel R; Singer SW
    Biotechnol Lett; 2020 Oct; 42(10):1897-1905. PubMed ID: 32557119
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Insights into the cellulose degradation mechanism of the thermophilic fungus
    Li X; Han C; Li W; Chen G; Wang L
    Biotechnol Biofuels; 2020; 13():143. PubMed ID: 32817759
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Debranching of soluble wheat arabinoxylan dramatically enhances recalcitrant binding to cellulose.
    Selig MJ; Thygesen LG; Felby C; Master ER
    Biotechnol Lett; 2015 Mar; 37(3):633-41. PubMed ID: 25335745
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A novel AA10 from Paenibacillus curdlanolyticus and its synergistic action on crystalline and complex polysaccharides.
    Limsakul P; Phitsuwan P; Waeonukul R; Pason P; Tachaapaikoon C; Poomputsa K; Kosugi A; Sakka M; Sakka K; Ratanakhanokchai K
    Appl Microbiol Biotechnol; 2020 Sep; 104(17):7533-7550. PubMed ID: 32651597
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Real-time imaging reveals that lytic polysaccharide monooxygenase promotes cellulase activity by increasing cellulose accessibility.
    Song B; Li B; Wang X; Shen W; Park S; Collings C; Feng A; Smith SJ; Walton JD; Ding SY
    Biotechnol Biofuels; 2018; 11():41. PubMed ID: 29467819
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Engineering chitinolytic activity into a cellulose-active lytic polysaccharide monooxygenase provides insights into substrate specificity.
    Jensen MS; Klinkenberg G; Bissaro B; Chylenski P; Vaaje-Kolstad G; Kvitvang HF; Nærdal GK; Sletta H; Forsberg Z; Eijsink VGH
    J Biol Chem; 2019 Dec; 294(50):19349-19364. PubMed ID: 31656228
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The synergy between LPMOs and cellulases in enzymatic saccharification of cellulose is both enzyme- and substrate-dependent.
    Tokin R; Ipsen JØ; Westh P; Johansen KS
    Biotechnol Lett; 2020 Oct; 42(10):1975-1984. PubMed ID: 32458293
    [TBL] [Abstract][Full Text] [Related]  

  • 60. In situ measurements of oxidation-reduction potential and hydrogen peroxide concentration as tools for revealing LPMO inactivation during enzymatic saccharification of cellulose.
    Kadić A; Várnai A; Eijsink VGH; Horn SJ; Lidén G
    Biotechnol Biofuels; 2021 Feb; 14(1):46. PubMed ID: 33602308
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.