These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 36604763)

  • 61. A thermostable bacterial lytic polysaccharide monooxygenase with high operational stability in a wide temperature range.
    Tuveng TR; Jensen MS; Fredriksen L; Vaaje-Kolstad G; Eijsink VGH; Forsberg Z
    Biotechnol Biofuels; 2020 Nov; 13(1):194. PubMed ID: 33292445
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Lytic polysaccharide monooxygenases from Myceliophthora thermophila C1 differ in substrate preference and reducing agent specificity.
    Frommhagen M; Koetsier MJ; Westphal AH; Visser J; Hinz SW; Vincken JP; van Berkel WJ; Kabel MA; Gruppen H
    Biotechnol Biofuels; 2016; 9(1):186. PubMed ID: 27588039
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Characterization of a novel Lytic Polysaccharide Monooxygenase from Malbranchea cinnamomea exhibiting dual catalytic behavior.
    Basotra N; Dhiman SS; Agrawal D; Sani RK; Tsang A; Chadha BS
    Carbohydr Res; 2019 May; 478():46-53. PubMed ID: 31054382
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Insights into an unusual Auxiliary Activity 9 family member lacking the histidine brace motif of lytic polysaccharide monooxygenases.
    Frandsen KEH; Tovborg M; Jørgensen CI; Spodsberg N; Rosso MN; Hemsworth GR; Garman EF; Grime GW; Poulsen JN; Batth TS; Miyauchi S; Lipzen A; Daum C; Grigoriev IV; Johansen KS; Henrissat B; Berrin JG; Lo Leggio L
    J Biol Chem; 2019 Nov; 294(45):17117-17130. PubMed ID: 31471321
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Comparative study of two chitin-active and two cellulose-active AA10-type lytic polysaccharide monooxygenases.
    Forsberg Z; Røhr AK; Mekasha S; Andersson KK; Eijsink VG; Vaaje-Kolstad G; Sørlie M
    Biochemistry; 2014 Mar; 53(10):1647-56. PubMed ID: 24559135
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Recombinant expression of Thermobifida fusca E7 LPMO in Pichia pastoris and Escherichia coli and their functional characterization.
    Rodrigues KB; Macêdo JKA; Teixeira T; Barros JS; Araújo ACB; Santos FP; Quirino BF; Brasil BSAF; Salum TFC; Abdelnur PV; Fávaro LCL
    Carbohydr Res; 2017 Aug; 448():175-181. PubMed ID: 28411891
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The
    Fanuel M; Garajova S; Ropartz D; McGregor N; Brumer H; Rogniaux H; Berrin JG
    Biotechnol Biofuels; 2017; 10():63. PubMed ID: 28293293
    [TBL] [Abstract][Full Text] [Related]  

  • 68. On the functional characterization of lytic polysaccharide monooxygenases (LPMOs).
    Eijsink VGH; Petrovic D; Forsberg Z; Mekasha S; Røhr ÅK; Várnai A; Bissaro B; Vaaje-Kolstad G
    Biotechnol Biofuels; 2019; 12():58. PubMed ID: 30923566
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The impact of hydrogen peroxide supply on LPMO activity and overall saccharification efficiency of a commercial cellulase cocktail.
    Müller G; Chylenski P; Bissaro B; Eijsink VGH; Horn SJ
    Biotechnol Biofuels; 2018; 11():209. PubMed ID: 30061931
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Structure of a C1/C4-oxidizing AA9 lytic polysaccharide monooxygenase from the thermophilic fungus Malbranchea cinnamomea.
    Mazurkewich S; Seveso A; Hüttner S; Brändén G; Larsbrink J
    Acta Crystallogr D Struct Biol; 2021 Aug; 77(Pt 8):1019-1026. PubMed ID: 34342275
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Structural and Functional Analysis of a Lytic Polysaccharide Monooxygenase Important for Efficient Utilization of Chitin in Cellvibrio japonicus.
    Forsberg Z; Nelson CE; Dalhus B; Mekasha S; Loose JS; Crouch LI; Røhr ÅK; Gardner JG; Eijsink VG; Vaaje-Kolstad G
    J Biol Chem; 2016 Apr; 291(14):7300-12. PubMed ID: 26858252
    [TBL] [Abstract][Full Text] [Related]  

  • 72. An actinobacteria lytic polysaccharide monooxygenase acts on both cellulose and xylan to boost biomass saccharification.
    Corrêa TLR; Júnior AT; Wolf LD; Buckeridge MS; Dos Santos LV; Murakami MT
    Biotechnol Biofuels; 2019; 12():117. PubMed ID: 31168322
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Lytic xylan oxidases from wood-decay fungi unlock biomass degradation.
    Couturier M; Ladevèze S; Sulzenbacher G; Ciano L; Fanuel M; Moreau C; Villares A; Cathala B; Chaspoul F; Frandsen KE; Labourel A; Herpoël-Gimbert I; Grisel S; Haon M; Lenfant N; Rogniaux H; Ropartz D; Davies GJ; Rosso MN; Walton PH; Henrissat B; Berrin JG
    Nat Chem Biol; 2018 Mar; 14(3):306-310. PubMed ID: 29377002
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A comparative study on the activity of fungal lytic polysaccharide monooxygenases for the depolymerization of cellulose in soybean spent flakes.
    Pierce BC; Agger JW; Zhang Z; Wichmann J; Meyer AS
    Carbohydr Res; 2017 Sep; 449():85-94. PubMed ID: 28750348
    [TBL] [Abstract][Full Text] [Related]  

  • 75. An efficient arabinoxylan-debranching α-L-arabinofuranosidase of family GH62 from Aspergillus nidulans contains a secondary carbohydrate binding site.
    Wilkens C; Andersen S; Petersen BO; Li A; Busse-Wicher M; Birch J; Cockburn D; Nakai H; Christensen HEM; Kragelund BB; Dupree P; McCleary B; Hindsgaul O; Hachem MA; Svensson B
    Appl Microbiol Biotechnol; 2016 Jul; 100(14):6265-6277. PubMed ID: 26946172
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Fungal cellulose degradation by oxidative enzymes: from dysfunctional GH61 family to powerful lytic polysaccharide monooxygenase family.
    Morgenstern I; Powlowski J; Tsang A
    Brief Funct Genomics; 2014 Nov; 13(6):471-81. PubMed ID: 25217478
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A Lytic Polysaccharide Monooxygenase from a White-Rot Fungus Drives the Degradation of Lignin by a Versatile Peroxidase.
    Li F; Ma F; Zhao H; Zhang S; Wang L; Zhang X; Yu H
    Appl Environ Microbiol; 2019 May; 85(9):. PubMed ID: 30824433
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Deciphering the efficient cellulose degradation by the thermophilic fungus Myceliophthora thermophila focused on the synergistic action of glycoside hydrolases and lytic polysaccharide monooxygenases.
    Qin X; Zou J; Yang K; Li J; Wang X; Tu T; Wang Y; Yao B; Huang H; Luo H
    Bioresour Technol; 2022 Nov; 364():128027. PubMed ID: 36174898
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Lytic Polysaccharide Monooxygenases: The Microbial Power Tool for Lignocellulose Degradation.
    Johansen KS
    Trends Plant Sci; 2016 Nov; 21(11):926-936. PubMed ID: 27527668
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A simple enzymatic assay for the quantification of C1-specific cellulose oxidation by lytic polysaccharide monooxygenases.
    Keller MB; Felby C; Labate CA; Pellegrini VOA; Higasi P; Singh RK; Polikarpov I; Blossom BM
    Biotechnol Lett; 2020 Jan; 42(1):93-102. PubMed ID: 31745843
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.