BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 36605214)

  • 1. Immune dysfunctions affecting bone marrow Vγ9Vδ2 T cells in multiple myeloma: Role of immune checkpoints and disease status.
    Giannotta C; Castella B; Tripoli E; Grimaldi D; Avonto I; D'Agostino M; Larocca A; Kopecka J; Grasso M; Riganti C; Massaia M
    Front Immunol; 2022; 13():1073227. PubMed ID: 36605214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vγ9Vδ2 T Cells in the Bone Marrow of Myeloma Patients: A Paradigm of Microenvironment-Induced Immune Suppression.
    Castella B; Foglietta M; Riganti C; Massaia M
    Front Immunol; 2018; 9():1492. PubMed ID: 30013559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vγ9Vδ2 T Cells as Strategic Weapons to Improve the Potency of Immune Checkpoint Blockade and Immune Interventions in Human Myeloma.
    Castella B; Melaccio A; Foglietta M; Riganti C; Massaia M
    Front Oncol; 2018; 8():508. PubMed ID: 30460198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anergic bone marrow Vγ9Vδ2 T cells as early and long-lasting markers of PD-1-targetable microenvironment-induced immune suppression in human myeloma.
    Castella B; Foglietta M; Sciancalepore P; Rigoni M; Coscia M; Griggio V; Vitale C; Ferracini R; Saraci E; Omedé P; Riganti C; Palumbo A; Boccadoro M; Massaia M
    Oncoimmunology; 2015 Nov; 4(11):e1047580. PubMed ID: 26451323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic approaches to rescue antitumor Vγ9Vδ2 T-cell functions in myeloma.
    Castella B; Riganti C; Massaia M
    Front Biosci (Landmark Ed); 2020 Jan; 25(1):69-105. PubMed ID: 31585878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PD-L1/PD-1 Pattern of Expression Within the Bone Marrow Immune Microenvironment in Smoldering Myeloma and Active Multiple Myeloma Patients.
    Costa F; Vescovini R; Marchica V; Storti P; Notarfranchi L; Dalla Palma B; Toscani D; Burroughs-Garcia J; Catarozzo MT; Sammarelli G; Giuliani N
    Front Immunol; 2020; 11():613007. PubMed ID: 33488620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PD-1 Blockade Reinvigorates Bone Marrow CD8
    Kwon M; Kim CG; Lee H; Cho H; Kim Y; Lee EC; Choi SJ; Park J; Seo IH; Bogen B; Song IC; Jo DY; Kim JS; Park SH; Choi I; Choi YS; Shin EC
    Clin Cancer Res; 2020 Apr; 26(7):1644-1655. PubMed ID: 31941832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased exhausted CD8
    Tan J; Chen S; Huang J; Chen Y; Yang L; Wang C; Zhong J; Lu Y; Wang L; Zhu K; Li Y
    Asia Pac J Clin Oncol; 2018 Oct; 14(5):e266-e274. PubMed ID: 29943497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lenalidomide Enhances Immune Checkpoint Blockade-Induced Immune Response in Multiple Myeloma.
    Görgün G; Samur MK; Cowens KB; Paula S; Bianchi G; Anderson JE; White RE; Singh A; Ohguchi H; Suzuki R; Kikuchi S; Harada T; Hideshima T; Tai YT; Laubach JP; Raje N; Magrangeas F; Minvielle S; Avet-Loiseau H; Munshi NC; Dorfman DM; Richardson PG; Anderson KC
    Clin Cancer Res; 2015 Oct; 21(20):4607-18. PubMed ID: 25979485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Releasing the restraints of Vγ9Vδ2 T-cells in cancer immunotherapy.
    Ridgley LA; Caron J; Dalgleish A; Bodman-Smith M
    Front Immunol; 2022; 13():1065495. PubMed ID: 36713444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immune modulation by zoledronic acid in human myeloma: an advantageous cross-talk between Vγ9Vδ2 T cells, αβ CD8+ T cells, regulatory T cells, and dendritic cells.
    Castella B; Riganti C; Fiore F; Pantaleoni F; Canepari ME; Peola S; Foglietta M; Palumbo A; Bosia A; Coscia M; Boccadoro M; Massaia M
    J Immunol; 2011 Aug; 187(4):1578-90. PubMed ID: 21753152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mass Cytometry Discovers Two Discrete Subsets of CD39
    Marsh-Wakefield F; Kruzins A; McGuire HM; Yang S; Bryant C; Fazekas de St Groth B; Nassif N; Byrne SN; Gibson J; Brown C; Larsen S; McCulloch D; Boyle R; Clark G; Joshua D; Ho PJ; Vuckovic S
    Front Immunol; 2019; 10():1596. PubMed ID: 31428081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple Myeloma-Derived Extracellular Vesicles Modulate the Bone Marrow Immune Microenvironment.
    Lopes R; Caetano J; Barahona F; Pestana C; Ferreira BV; Lourenço D; Queirós AC; Bilreiro C; Shemesh N; Beck HC; Carvalho AS; Matthiesen R; Bogen B; Costa-Silva B; Serre K; Carneiro EA; João C
    Front Immunol; 2022; 13():909880. PubMed ID: 35874665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Checkpoint molecules coordinately restrain hyperactivated effector T cells in the tumor microenvironment.
    Yang M; Du W; Yi L; Wu S; He C; Zhai W; Yue C; Sun R; Menk AV; Delgoffe GM; Jiang J; Lu B
    Oncoimmunology; 2020; 9(1):1708064. PubMed ID: 32076578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deregulated Expression of Immune Checkpoints on Circulating CD4 T Cells May Complicate Clinical Outcome and Response to Treatment with Checkpoint Inhibitors in Multiple Myeloma Patients.
    Kulikowska de Nałęcz A; Ciszak L; Usnarska-Zubkiewicz L; Frydecka I; Pawlak E; Szmyrka M; Kosmaczewska A
    Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene Expression Analysis of the Bone Marrow Microenvironment Reveals Distinct Immunotypes in Smoldering Multiple Myeloma Associated to Progression to Symptomatic Disease.
    Isola I; Brasó-Maristany F; Moreno DF; Mena MP; Oliver-Calders A; Paré L; Rodríguez-Lobato LG; Martin-Antonio B; Cibeira MT; Bladé J; Rosiñol L; Prat A; Lozano E; Fernández de Larrea C
    Front Immunol; 2021; 12():792609. PubMed ID: 34880879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative and functional characteristics of circulating and bone marrow PD-1- and TIM-3-positive T cells in treated multiple myeloma patients.
    Batorov EV; Aristova TA; Sergeevicheva VV; Sizikova SA; Ushakova GY; Pronkina NV; Shishkova IV; Shevela EY; Ostanin AA; Chernykh ER
    Sci Rep; 2020 Nov; 10(1):20846. PubMed ID: 33257767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osteoclast Immunosuppressive Effects in Multiple Myeloma: Role of Programmed Cell Death Ligand 1.
    Tai YT; Cho SF; Anderson KC
    Front Immunol; 2018; 9():1822. PubMed ID: 30147691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of the Immune Checkpoint Regulators LAG-3 and TIM-3 in Classical Hodgkin Lymphoma.
    El Halabi L; Adam J; Gravelle P; Marty V; Danu A; Lazarovici J; Ribrag V; Bosq J; Camara-Clayette V; Laurent C; Ghez D
    Clin Lymphoma Myeloma Leuk; 2021 Apr; 21(4):257-266.e3. PubMed ID: 33277223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased expression of immune checkpoint programmed cell death protein-1 (PD-1) on T cell subsets of bone marrow aspirates in patients with B-Lymphoblastic leukemia, especially in relapse and at diagnosis.
    Park SH; You E; Park CJ; Cho YU; Jang S; Im HJ; Seo JJ; Park HS; Lee JH
    Cytometry B Clin Cytom; 2020 Jul; 98(4):336-347. PubMed ID: 32268011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.