These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 36605214)

  • 21. Bone marrow central memory and memory stem T-cell exhaustion in AML patients relapsing after HSCT.
    Noviello M; Manfredi F; Ruggiero E; Perini T; Oliveira G; Cortesi F; De Simone P; Toffalori C; Gambacorta V; Greco R; Peccatori J; Casucci M; Casorati G; Dellabona P; Onozawa M; Teshima T; Griffioen M; Halkes CJM; Falkenburg JHF; Stölzel F; Altmann H; Bornhäuser M; Waterhouse M; Zeiser R; Finke J; Cieri N; Bondanza A; Vago L; Ciceri F; Bonini C
    Nat Commun; 2019 Mar; 10(1):1065. PubMed ID: 30911002
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Highly proliferative and functional PD-1
    Batorov EV; Aristova TA; Pronkina NV; Sergeevicheva VV; Sizikova SA; Ushakova GY; Shevela EY; Ostanin AA; Chernykh ER
    Int Immunopharmacol; 2021 Nov; 100():108093. PubMed ID: 34474273
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Programmed cell death protein 1 activation preferentially inhibits CD28.CAR-T cells.
    Zolov SN; Rietberg SP; Bonifant CL
    Cytotherapy; 2018 Oct; 20(10):1259-1266. PubMed ID: 30309710
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of bone marrow T cells in monoclonal gammopathy of undetermined significance, multiple myeloma, and plasma cell leukemia demonstrates increased infiltration by cytotoxic/Th1 T cells demonstrating a squed TCR-Vbeta repertoire.
    Pérez-Andres M; Almeida J; Martin-Ayuso M; Moro MJ; Martin-Nuñez G; Galende J; Hernandez J; Mateo G; San Miguel JF; Orfao A; ;
    Cancer; 2006 Mar; 106(6):1296-305. PubMed ID: 16475149
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of Curcumin on multi-level immune checkpoint blockade and T cell dysfunction in head and neck cancer.
    Liu L; Lim MA; Jung SN; Oh C; Won HR; Jin YL; Piao Y; Kim HJ; Chang JW; Koo BS
    Phytomedicine; 2021 Nov; 92():153758. PubMed ID: 34592487
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Immune Checkpoint Programmed Cell Death Protein-1 (PD-1) Expression on Bone Marrow T Cell Subsets in Patients With Plasma Cell Myeloma.
    Lee MY; Park CJ; Cho YU; You E; Jang S; Seo EJ; Lee JH; Yoon DH; Suh C
    Ann Lab Med; 2021 May; 41(3):259-267. PubMed ID: 33303710
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multiple Myeloma and the Immune Microenvironment.
    Kawano Y; Roccaro AM; Ghobrial IM; Azzi J
    Curr Cancer Drug Targets; 2017; 17(9):806-818. PubMed ID: 28201978
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Targeting myeloma-osteoclast interaction with Vγ9Vδ2 T cells.
    Cui Q; Shibata H; Oda A; Amou H; Nakano A; Yata K; Hiasa M; Watanabe K; Nakamura S; Miki H; Harada T; Fujii S; Kagawa K; Takeuchi K; Ozaki S; Matsumoto T; Abe M
    Int J Hematol; 2011 Jul; 94(1):63-70. PubMed ID: 21698356
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Immune Phenotypes and Target Antigens of Clonally Expanded Bone Marrow T Cells in Treatment-Naïve Multiple Myeloma.
    Welters C; Lammoglia Cobo MF; Stein CA; Hsu MT; Ben Hamza A; Penter L; Chen X; Buccitelli C; Popp O; Mertins P; Dietze K; Bullinger L; Moosmann A; Blanc E; Beule D; Gerbitz A; Strobel J; Hackstein H; Rahn HP; Dornmair K; Blankenstein T; Hansmann L
    Cancer Immunol Res; 2022 Nov; 10(11):1407-1419. PubMed ID: 36122410
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Relationship between immune checkpoint proteins, tumour microenvironment characteristics, and prognosis in primary operable colorectal cancer.
    Al-Badran SS; Grant L; Campo MV; Inthagard J; Pennel K; Quinn J; Konanahalli P; Hayman L; Horgan PG; McMillan DC; Roxburgh CS; Roseweir A; Park JH; Edwards J
    J Pathol Clin Res; 2021 Mar; 7(2):121-134. PubMed ID: 33338327
    [TBL] [Abstract][Full Text] [Related]  

  • 31. IL-21-mediated expansion of Vγ9Vδ2 T cells is limited by the Tim-3 pathway.
    Wu K; Zhao H; Xiu Y; Li Z; Zhao J; Xie S; Zeng H; Zhang H; Yu L; Xu B
    Int Immunopharmacol; 2019 Apr; 69():136-142. PubMed ID: 30708194
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inverse relationship between oligoclonal expanded CD69- TTE and CD69+ TTE cells in bone marrow of multiple myeloma patients.
    Vuckovic S; Bryant CE; Lau KHA; Yang S; Favaloro J; McGuire HM; Clark G; de St Groth BF; Marsh-Wakefield F; Nassif N; Abadir E; Vanguru V; McCulloch D; Brown C; Larsen S; Dunkley S; Khoo L; Gibson J; Boyle R; Joshua D; Ho PJ
    Blood Adv; 2020 Oct; 4(19):4593-4604. PubMed ID: 32986791
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Targeting the Immune Niche within the Bone Marrow Microenvironment: The Rise of Immunotherapy in Multiple Myeloma.
    Podar K; Jager D
    Curr Cancer Drug Targets; 2017; 17(9):782-805. PubMed ID: 28201977
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dysfunctional Vγ9Vδ2 T cells are negative prognosticators and markers of dysregulated mevalonate pathway activity in chronic lymphocytic leukemia cells.
    Coscia M; Vitale C; Peola S; Foglietta M; Rigoni M; Griggio V; Castella B; Angelini D; Chiaretti S; Riganti C; Guarini A; Drandi D; Ladetto M; Bosia A; Foà R; Battistini L; Boccadoro M; Fournié JJ; Massaia M
    Blood; 2012 Oct; 120(16):3271-9. PubMed ID: 22932792
    [TBL] [Abstract][Full Text] [Related]  

  • 35. TIM-3, LAG-3, or 2B4 gene disruptions increase the anti-tumor response of engineered T cells.
    Cianciotti BC; Magnani ZI; Ugolini A; Camisa B; Merelli I; Vavassori V; Potenza A; Imparato A; Manfredi F; Abbati D; Perani L; Spinelli A; Shifrut E; Ciceri F; Vago L; Di Micco R; Naldini L; Genovese P; Ruggiero E; Bonini C
    Front Immunol; 2024; 15():1315283. PubMed ID: 38510235
    [TBL] [Abstract][Full Text] [Related]  

  • 36. PD-L1/PD-1 presence in the tumor microenvironment and activity of PD-1 blockade in multiple myeloma.
    Paiva B; Azpilikueta A; Puig N; Ocio EM; Sharma R; Oyajobi BO; Labiano S; San-Segundo L; Rodriguez A; Aires-Mejia I; Rodriguez I; Escalante F; de Coca AG; Barez A; San Miguel JF; Melero I
    Leukemia; 2015 Oct; 29(10):2110-3. PubMed ID: 25778100
    [No Abstract]   [Full Text] [Related]  

  • 37. Nectin-2 Expression on Malignant Plasma Cells Is Associated with Better Response to TIGIT Blockade in Multiple Myeloma.
    Lozano E; Mena MP; Díaz T; Martin-Antonio B; León S; Rodríguez-Lobato LG; Oliver-Caldés A; Cibeira MT; Bladé J; Prat A; Rosiñol L; Fernández de Larrea C
    Clin Cancer Res; 2020 Sep; 26(17):4688-4698. PubMed ID: 32513837
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Myeloma escape after stem cell transplantation is a consequence of T-cell exhaustion and is prevented by TIGIT blockade.
    Minnie SA; Kuns RD; Gartlan KH; Zhang P; Wilkinson AN; Samson L; Guillerey C; Engwerda C; MacDonald KPA; Smyth MJ; Markey KA; Vuckovic S; Hill GR
    Blood; 2018 Oct; 132(16):1675-1688. PubMed ID: 30154111
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tumor-Infiltrating and Peripheral Blood T-cell Immunophenotypes Predict Early Relapse in Localized Clear Cell Renal Cell Carcinoma.
    Giraldo NA; Becht E; Vano Y; Petitprez F; Lacroix L; Validire P; Sanchez-Salas R; Ingels A; Oudard S; Moatti A; Buttard B; Bourass S; Germain C; Cathelineau X; Fridman WH; Sautès-Fridman C
    Clin Cancer Res; 2017 Aug; 23(15):4416-4428. PubMed ID: 28213366
    [No Abstract]   [Full Text] [Related]  

  • 40. Dual but not single PD-1 or TIM-3 blockade enhances oncolytic virotherapy in refractory lung cancer.
    Sun F; Guo ZS; Gregory AD; Shapiro SD; Xiao G; Qu Z
    J Immunother Cancer; 2020 May; 8(1):. PubMed ID: 32461344
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.