These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 36605425)
41. Deep Learning and Machine Learning with Grid Search to Predict Later Occurrence of Breast Cancer Metastasis Using Clinical Data. Jiang X; Xu C J Clin Med; 2022 Sep; 11(19):. PubMed ID: 36233640 [TBL] [Abstract][Full Text] [Related]
42. Development of machine learning models to predict lymph node metastases in major salivary gland cancers. Costantino A; Canali L; Festa BM; Kim SH; Spriano G; De Virgilio A Eur J Surg Oncol; 2023 Sep; 49(9):106965. PubMed ID: 37393130 [TBL] [Abstract][Full Text] [Related]
43. Application of an Interpretable Machine Learning Model to Predict Lymph Node Metastasis in Patients with Laryngeal Carcinoma. Feng M; Zhang J; Zhou X; Mo H; Jia L; Zhang C; Hu Y; Yuan W J Oncol; 2022; 2022():6356399. PubMed ID: 36411795 [TBL] [Abstract][Full Text] [Related]
44. The prediction of distant metastasis risk for male breast cancer patients based on an interpretable machine learning model. Zhao X; Jiang C BMC Med Inform Decis Mak; 2023 Apr; 23(1):74. PubMed ID: 37085843 [TBL] [Abstract][Full Text] [Related]
45. A machine learning model for visualization and dynamic clinical prediction of stroke recurrence in acute ischemic stroke patients: A real-world retrospective study. Wang K; Shi Q; Sun C; Liu W; Yau V; Xu C; Liu H; Sun C; Yin C; Wei X; Li W; Rong L Front Neurosci; 2023; 17():1130831. PubMed ID: 37051146 [TBL] [Abstract][Full Text] [Related]
46. Prediction model of ocular metastasis from primary liver cancer: Machine learning-based development and interpretation study. Sun JQ; Wu SN; Mou ZL; Wen JY; Wei H; Zou J; Li QJ; Liu ZL; Xu SH; Kang M; Ling Q; Huang H; Chen X; Wang YX; Liao XL; Tan G; Shao Y Cancer Med; 2023 Oct; 12(20):20482-20496. PubMed ID: 37795569 [TBL] [Abstract][Full Text] [Related]
47. Interpretable machine learning model to predict surgical difficulty in laparoscopic resection for rectal cancer. Yu M; Yuan Z; Li R; Shi B; Wan D; Dong X Front Oncol; 2024; 14():1337219. PubMed ID: 38380369 [TBL] [Abstract][Full Text] [Related]
48. Development of a machine learning-based model to predict prognosis of alpha-fetoprotein-positive hepatocellular carcinoma. Dong B; Zhang H; Duan Y; Yao S; Chen Y; Zhang C J Transl Med; 2024 May; 22(1):455. PubMed ID: 38741163 [TBL] [Abstract][Full Text] [Related]
50. Use machine learning to predict pulmonary metastasis of esophageal cancer: a population-based study. Fang Y; Wan J; Zeng Y J Cancer Res Clin Oncol; 2024 Sep; 150(9):420. PubMed ID: 39283330 [TBL] [Abstract][Full Text] [Related]
51. Machine learning algorithms to predict intraoperative hemorrhage in surgical patients: a modeling study of real-world data in Shanghai, China. Shi Y; Zhang G; Ma C; Xu J; Xu K; Zhang W; Wu J; Xu L BMC Med Inform Decis Mak; 2023 Aug; 23(1):156. PubMed ID: 37563676 [TBL] [Abstract][Full Text] [Related]
52. External validation and comparison of MR-based radiomics models for predicting pathological complete response in locally advanced rectal cancer: a two-centre, multi-vendor study. Wei Q; Chen Z; Tang Y; Chen W; Zhong L; Mao L; Hu S; Wu Y; Deng K; Yang W; Liu X Eur Radiol; 2023 Mar; 33(3):1906-1917. PubMed ID: 36355199 [TBL] [Abstract][Full Text] [Related]
53. Using Machine Learning Methods to Predict Bone Metastases in Breast Infiltrating Ductal Carcinoma Patients. Liu WC; Li MX; Wu SN; Tong WL; Li AA; Sun BL; Liu ZL; Liu JM Front Public Health; 2022; 10():922510. PubMed ID: 35875050 [TBL] [Abstract][Full Text] [Related]
54. [Constructing a predictive model for the death risk of patients with septic shock based on supervised machine learning algorithms]. Xie Z; Jin J; Liu D; Lu S; Yu H; Han D; Sun W; Huang M Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2024 Apr; 36(4):345-352. PubMed ID: 38813626 [TBL] [Abstract][Full Text] [Related]
55. Establishment and validation of an interactive artificial intelligence platform to predict postoperative ambulatory status for patients with metastatic spinal disease: a multicenter analysis. Cui Y; Shi X; Qin Y; Wang Q; Cao X; Che X; Pan Y; Wang B; Lei M; Liu Y Int J Surg; 2024 May; 110(5):2738-2756. PubMed ID: 38376838 [TBL] [Abstract][Full Text] [Related]
56. Application of machine learning algorithms to predict lymph node metastasis in gastric neuroendocrine neoplasms. Liu L; Liu W; Jia Z; Li Y; Wu H; Qu S; Zhu J; Liu X; Xu C Heliyon; 2023 Oct; 9(10):e20928. PubMed ID: 37928390 [TBL] [Abstract][Full Text] [Related]
57. Predicting Survival of Patients With Rectal Neuroendocrine Tumors Using Machine Learning: A SEER-Based Population Study. Cheng X; Li J; Xu T; Li K; Li J Front Surg; 2021; 8():745220. PubMed ID: 34805260 [No Abstract] [Full Text] [Related]
58. LASSO-based machine learning models for the prediction of central lymph node metastasis in clinically negative patients with papillary thyroid carcinoma. Feng JW; Ye J; Qi GF; Hong LZ; Wang F; Liu SY; Jiang Y Front Endocrinol (Lausanne); 2022; 13():1030045. PubMed ID: 36506061 [TBL] [Abstract][Full Text] [Related]
59. Uveal melanoma distant metastasis prediction system: A retrospective observational study based on machine learning. Wu SN; Qin DY; Zhu L; Guo SJ; Li X; Huang CH; Hu J; Liu Z Cancer Sci; 2024 Sep; 115(9):3107-3126. PubMed ID: 38992984 [TBL] [Abstract][Full Text] [Related]
60. Applying interpretable machine learning algorithms to predict risk factors for permanent stoma in patients after TME. Liu Y; Zhao S; Du W; Tian Z; Chi H; Chao C; Shen W Front Surg; 2023; 10():1125875. PubMed ID: 37035560 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]