These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 36605521)

  • 1. Interaction learning control with movement primitives for lower limb exoskeleton.
    Wang J; Wu D; Gao Y; Dong W
    Front Neurorobot; 2022; 16():1086578. PubMed ID: 36605521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exoskeleton Active Walking Assistance Control Framework Based on Frequency Adaptive Dynamics Movement Primitives.
    Qiu S; Guo W; Zha F; Deng J; Wang X
    Front Neurorobot; 2021; 15():672582. PubMed ID: 34093160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reinforcement Learning and Control of a Lower Extremity Exoskeleton for Squat Assistance.
    Luo S; Androwis G; Adamovich S; Su H; Nunez E; Zhou X
    Front Robot AI; 2021; 8():702845. PubMed ID: 34350214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decoding Upper-Limb Movement Intention Through Adaptive Dynamic Movement Primitives: A Proof-of-Concept Study with a Shoulder-Elbow Exoskeleton.
    Penna MF; Trigili E; Amato L; Eken H; Dell'Agnello F; Lanotte F; Gruppioni E; Vitiello N; Crea S
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Safe Robot Trajectory Control Using Probabilistic Movement Primitives and Control Barrier Functions.
    Davoodi M; Iqbal A; Cloud JM; Beksi WJ; Gans NR
    Front Robot AI; 2022; 9():772228. PubMed ID: 35368435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Model-Based Comparison of Passive and Active Assistance Designs in an Occupational Upper Limb Exoskeleton for Overhead Lifting.
    Zhou X; Zheng L
    IISE Trans Occup Ergon Hum Factors; 2021; 9(3-4):167-185. PubMed ID: 34254566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and motion control of exoskeleton robot for paralyzed lower limb rehabilitation.
    Zhu Z; Liu L; Zhang W; Jiang C; Wang X; Li J
    Front Neurosci; 2024; 18():1355052. PubMed ID: 38456145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robot Learning Method for Human-like Arm Skills Based on the Hybrid Primitive Framework.
    Li J; Han H; Hu J; Lin J; Li P
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using Probabilistic Movement Primitives in Analyzing Human Motion Differences Under Transcranial Current Stimulation.
    Xue H; Herzog R; Berger TM; Bäumer T; Weissbach A; Rueckert E
    Front Robot AI; 2021; 8():721890. PubMed ID: 34595209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of a wearable shoulder exoskeleton robot with dual-purpose gravity compensation and a compliant misalignment compensation mechanism.
    Atkins J; Chang D; Lee H
    Wearable Technol; 2024; 5():e4. PubMed ID: 38486861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning by Demonstration for Motion Planning of Upper-Limb Exoskeletons.
    Lauretti C; Cordella F; Ciancio AL; Trigili E; Catalan JM; Badesa FJ; Crea S; Pagliara SM; Sterzi S; Vitiello N; Garcia Aracil N; Zollo L
    Front Neurorobot; 2018; 12():5. PubMed ID: 29527161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Learning-Based Hierarchical Control Scheme for an Exoskeleton Robot in Human-Robot Cooperative Manipulation.
    Deng M; Li Z; Kang Y; Chen CLP; Chu X
    IEEE Trans Cybern; 2020 Jan; 50(1):112-125. PubMed ID: 30183653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intrinsic Sensing and Evolving Internal Model Control of Compact Elastic Module for a Lower Extremity Exoskeleton.
    Wang L; Du Z; Dong W; Shen Y; Zhao G
    Sensors (Basel); 2018 Mar; 18(3):. PubMed ID: 29562684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton.
    Proietti T; Guigon E; Roby-Brami A; Jarrassé N
    J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of shoulder muscle and joint function using a powered upper-limb exoskeleton.
    Wu W; Fong J; Crocher V; Lee PVS; Oetomo D; Tan Y; Ackland DC
    J Biomech; 2018 Apr; 72():7-16. PubMed ID: 29506759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Online sparse Gaussian process based human motion intent learning for an electrically actuated lower extremity exoskeleton.
    Long Y; Du ZJ; Chen CF; Dong W; Wang WD
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():919-924. PubMed ID: 28813938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A lower-limb power-assist robot with perception-assist.
    Hayashi Y; Kiguchi K
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975445. PubMed ID: 22275645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reference Trajectory Reshaping Optimization and Control of Robotic Exoskeletons for Human-Robot Co-Manipulation.
    Wu X; Li Z; Kan Z; Gao H
    IEEE Trans Cybern; 2020 Aug; 50(8):3740-3751. PubMed ID: 31484148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive Control of Exoskeleton Robots for Periodic Assistive Behaviours Based on EMG Feedback Minimisation.
    Peternel L; Noda T; Petrič T; Ude A; Morimoto J; Babič J
    PLoS One; 2016; 11(2):e0148942. PubMed ID: 26881743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergetic gait prediction and compliant control of SEA-driven knee exoskeleton for gait rehabilitation.
    Liu H; Zhu C; Zhou Z; Dong Y; Meng W; Liu Q
    Front Bioeng Biotechnol; 2024; 12():1358022. PubMed ID: 38344287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.