BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 36605624)

  • 1. Preparation and properties of cellulose nanocrystal-based ion-conductive hydrogels.
    Huang X; Ao X; Yang L; Ye J; Wang C
    RSC Adv; 2022 Dec; 13(1):527-533. PubMed ID: 36605624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Facile One-Pot Preparation and Properties of Nanocellulose-Reinforced Ionic Conductive Hydrogels.
    Huang X; Wang Y; Wang Y; Yang L
    Molecules; 2023 Jan; 28(3):. PubMed ID: 36770969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electroactive Hydrogels Made with Polyvinyl Alcohol/Cellulose Nanocrystals.
    Jayaramudu T; Ko HU; Kim HC; Kim JW; Muthoka RM; Kim J
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30181521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interpenetrating polymer networks in polyvinyl alcohol/cellulose nanocrystals hydrogels to develop absorbent materials.
    Bai H; Li Z; Zhang S; Wang W; Dong W
    Carbohydr Polym; 2018 Nov; 200():468-476. PubMed ID: 30177188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyvinyl Alcohol/Graphene Oxide Conductive Hydrogels via the Synergy of Freezing and Salting Out for Strain Sensors.
    Wei J; Wang R; Pan F; Fu Z
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel Polyvinyl Alcohol (PVA)/Cellulose Nanocrystal (CNC) Supramolecular Composite Hydrogels: Preparation and Application as Soil Conditioners.
    Wang Z; Ding Y; Wang J
    Nanomaterials (Basel); 2019 Oct; 9(10):. PubMed ID: 31581503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of mechanically tough and self-recoverable nanocomposite hydrogels from polyacrylamide grafted cellulose nanocrystal and poly(acrylic acid).
    Li B; Zhang Y; Wu C; Guo B; Luo Z
    Carbohydr Polym; 2018 Oct; 198():1-8. PubMed ID: 30092978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stretchable, freezing-tolerant conductive hydrogel for wearable electronics reinforced by cellulose nanocrystals toward multiple hydrogen bonding.
    Wang H; Li Z; Zuo M; Zeng X; Tang X; Sun Y; Lin L
    Carbohydr Polym; 2022 Mar; 280():119018. PubMed ID: 35027123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly Stretchable, Self-Adhesive, Antidrying Ionic Conductive Organohydrogels for Strain Sensors.
    Huang X; Wang C; Yang L; Ao X
    Molecules; 2023 Mar; 28(6):. PubMed ID: 36985790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anisotropic cellulose nanocrystal composite hydrogel for multiple responses and information encryption.
    Sun W; Wang J; He M
    Carbohydr Polym; 2023 Mar; 303():120446. PubMed ID: 36657839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Freeze-resistant, rapidly polymerizable, ionic conductive hydrogel induced by Deep Eutectic Solvent (DES) after lignocellulose pretreatment for flexible sensors.
    Yan Y; He C; Zhang L; Dong H; Zhang X
    Int J Biol Macromol; 2023 Jan; 224():143-155. PubMed ID: 36257360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of cellulose nanocrystal reinforced nanocomposite hydrogel with self-healing properties.
    Liu X; Yang K; Chang M; Wang X; Ren J
    Carbohydr Polym; 2020 Jul; 240():116289. PubMed ID: 32475570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly conductive and anti-freezing cellulose hydrogel for flexible sensors.
    Shu L; Wang Z; Zhang XF; Yao J
    Int J Biol Macromol; 2023 Mar; 230():123425. PubMed ID: 36706872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Copolymer-grafted cellulose nanocrystal induced nanocomposite hydrogels with enhanced strength, high elasticity and adhesiveness for flexible strain and pressure sensors.
    Li B; Chen Y; Wu W; Cao X; Luo Z
    Carbohydr Polym; 2023 Oct; 317():121092. PubMed ID: 37364960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and properties of graphene oxide-regenerated cellulose/polyvinyl alcohol hydrogel with pH-sensitive behavior.
    Rui-Hong X; Peng-Gang R; Jian H; Fang R; Lian-Zhen R; Zhen-Feng S
    Carbohydr Polym; 2016 Mar; 138():222-8. PubMed ID: 26794756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergistic strengthening of PVA ionic conductive hydrogels using aramid nanofibers and tannic acid for mechanically robust, antifreezing, water-retaining and antibacterial flexible sensors.
    Wu W; Shi L; Qian K; Zhou J; Zhao T; Thaiboonrod S; Miao M; Feng X
    J Colloid Interface Sci; 2024 Jan; 654(Pt B):1260-1271. PubMed ID: 37907005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly Stretchable and Stimulus-Free Self-Healing Hydrogels with Multiple Signal Detection Performance for Self-Powered Wearable Temperature Sensors.
    Chai X; Tang J; Li Y; Cao Y; Chen X; Chen T; Zhang Z
    ACS Appl Mater Interfaces; 2023 Apr; 15(14):18262-18271. PubMed ID: 37002947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellulose Nanocomposite Hydrogels: From Formulation to Material Properties.
    Butylina S; Geng S; Laatikainen K; Oksman K
    Front Chem; 2020; 8():655. PubMed ID: 33062631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile fabrication of strong and conductive cellulose hydrogels with wide temperature tolerance for flexible sensors.
    Shu L; Zhang XF; Wu Y; Wang Z; Yao J
    Int J Biol Macromol; 2023 Jun; 240():124438. PubMed ID: 37060973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and Characterization of Nanocomposite Hydrogels Based on Self-Assembling Collagen and Cellulose Nanocrystals.
    Li Y; Dong X; Yao L; Wang Y; Wang L; Jiang Z; Qiu D
    Polymers (Basel); 2023 Mar; 15(5):. PubMed ID: 36904549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.