BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 36606407)

  • 1. Characterizing the role of Pdgfra in calvarial development.
    Umar M; Bartoletti G; Dong C; Gahankari A; Browne D; Deng A; Jaramillo J; Sammarco M; Simkin J; He F
    Dev Dyn; 2023 May; 252(5):589-604. PubMed ID: 36606407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Origin matters: differences in embryonic tissue origin and Wnt signaling determine the osteogenic potential and healing capacity of frontal and parietal calvarial bones.
    Quarto N; Wan DC; Kwan MD; Panetta NJ; Li S; Longaker MT
    J Bone Miner Res; 2010 Jul; 25(7):1680-94. PubMed ID: 19929441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular and cellular characterization of mouse calvarial osteoblasts derived from neural crest and paraxial mesoderm.
    Xu Y; Malladi P; Zhou D; Longaker MT
    Plast Reconstr Surg; 2007 Dec; 120(7):1783-1795. PubMed ID: 18090740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced Activation of Canonical Wnt Signaling Confers Mesoderm-Derived Parietal Bone with Similar Osteogenic and Skeletal Healing Capacity to Neural Crest-Derived Frontal Bone.
    Li S; Quarto N; Senarath-Yapa K; Grey N; Bai X; Longaker MT
    PLoS One; 2015; 10(10):e0138059. PubMed ID: 26431534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene regulatory network from cranial neural crest cells to osteoblast differentiation and calvarial bone development.
    Liao J; Huang Y; Wang Q; Chen S; Zhang C; Wang D; Lv Z; Zhang X; Wu M; Chen G
    Cell Mol Life Sci; 2022 Feb; 79(3):158. PubMed ID: 35220463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of FGF signaling mediates proliferative and osteogenic differences between neural crest derived frontal and mesoderm parietal derived bone.
    Li S; Quarto N; Longaker MT
    PLoS One; 2010 Nov; 5(11):e14033. PubMed ID: 21124973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suppressor of Fused restraint of Hedgehog activity level is critical for osteogenic proliferation and differentiation during calvarial bone development.
    Li J; Cui Y; Xu J; Wang Q; Yang X; Li Y; Zhang X; Qiu M; Zhang Z; Zhang Z
    J Biol Chem; 2017 Sep; 292(38):15814-15825. PubMed ID: 28794157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological Signatures of Dual Embryonic Origins in Mouse Skull Vault.
    Hu B; Wu T; Zhao Y; Xu G; Shen R; Chen G
    Cell Physiol Biochem; 2017; 43(6):2525-2534. PubMed ID: 29130970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stage-specific roles of Ezh2 and Retinoic acid signaling ensure calvarial bone lineage commitment.
    Ferguson JW; Devarajan M; Atit RP
    Dev Biol; 2018 Nov; 443(2):173-187. PubMed ID: 30222957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integration of multiple signaling regulates through apoptosis the differential osteogenic potential of neural crest-derived and mesoderm-derived Osteoblasts.
    Li S; Meyer NP; Quarto N; Longaker MT
    PLoS One; 2013; 8(3):e58610. PubMed ID: 23536803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural crest and mesoderm lineage-dependent gene expression in orofacial development.
    Bhattacherjee V; Mukhopadhyay P; Singh S; Johnson C; Philipose JT; Warner CP; Greene RM; Pisano MM
    Differentiation; 2007 Jun; 75(5):463-77. PubMed ID: 17286603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Specific expression in mouse mesoderm- and neural crest-derived tissues of a human PDGFRA promoter/lacZ transgene.
    Zhang XQ; Afink GB; Svensson K; Jacobs JJ; Günther T; Forsberg-Nilsson K; van Zoelen EJ; Westermark B; Nistér M
    Mech Dev; 1998 Jan; 70(1-2):167-80. PubMed ID: 9510033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural crest induction by paraxial mesoderm in Xenopus embryos requires FGF signals.
    Monsoro-Burq AH; Fletcher RB; Harland RM
    Development; 2003 Jul; 130(14):3111-24. PubMed ID: 12783784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cranial suture lineage and contributions to repair of the mouse skull.
    Doro D; Liu A; Lau JS; Rajendran AK; Healy C; Krstic M; Grigoriadis AE; Iseki S; Liu KJ
    Development; 2024 Feb; 151(3):. PubMed ID: 38345329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship between neural crest cells and cranial mesoderm during head muscle development.
    Grenier J; Teillet MA; Grifone R; Kelly RG; Duprez D
    PLoS One; 2009; 4(2):e4381. PubMed ID: 19198652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Requirement of signalling by receptor tyrosine kinase RET for the directed migration of enteric nervous system progenitor cells during mammalian embryogenesis.
    Natarajan D; Marcos-Gutierrez C; Pachnis V; de Graaff E
    Development; 2002 Nov; 129(22):5151-60. PubMed ID: 12399307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Msx2 and Twist cooperatively control the development of the neural crest-derived skeletogenic mesenchyme of the murine skull vault.
    Ishii M; Merrill AE; Chan YS; Gitelman I; Rice DP; Sucov HM; Maxson RE
    Development; 2003 Dec; 130(24):6131-42. PubMed ID: 14597577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pdgfra and Pdgfrb genetically interact during craniofacial development.
    McCarthy N; Liu JS; Richarte AM; Eskiocak B; Lovely CB; Tallquist MD; Eberhart JK
    Dev Dyn; 2016 Jun; 245(6):641-52. PubMed ID: 26971580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphological comparison of the craniofacial phenotypes of mouse models expressing the Apert FGFR2 S252W mutation in neural crest- or mesoderm-derived tissues.
    Heuzé Y; Singh N; Basilico C; Jabs EW; Holmes G; Richtsmeier JT
    Bone; 2014 Jun; 63():101-9. PubMed ID: 24632501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of cranial neural crest cells to mouse skull development.
    Wu T; Chen G; Tian F; Liu HX
    Int J Dev Biol; 2017; 61(8-9):495-503. PubMed ID: 29139535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.