BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 36606407)

  • 41. Resolving homology in the face of shifting germ layer origins: Lessons from a major skull vault boundary.
    Teng CS; Cavin L; Maxson RE; Sánchez-Villagra MR; Crump JG
    Elife; 2019 Dec; 8():. PubMed ID: 31869306
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bone vs. fat: embryonic origin of progenitors determines response to androgen in adipocytes and osteoblasts.
    Wiren KM; Hashimoto JG; Semirale AA; Zhang XW
    Bone; 2011 Oct; 49(4):662-72. PubMed ID: 21704206
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The homeoprotein engrailed 1 has pleiotropic functions in calvarial intramembranous bone formation and remodeling.
    Deckelbaum RA; Majithia A; Booker T; Henderson JE; Loomis CA
    Development; 2006 Jan; 133(1):63-74. PubMed ID: 16319118
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hedgehog signaling in the neural crest cells regulates the patterning and growth of facial primordia.
    Jeong J; Mao J; Tenzen T; Kottmann AH; McMahon AP
    Genes Dev; 2004 Apr; 18(8):937-51. PubMed ID: 15107405
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mechanisms driving neural crest induction and migration in the zebrafish and Xenopus laevis.
    Klymkowsky MW; Rossi CC; Artinger KB
    Cell Adh Migr; 2010; 4(4):595-608. PubMed ID: 20962584
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cell lineage in mammalian craniofacial mesenchyme.
    Yoshida T; Vivatbutsiri P; Morriss-Kay G; Saga Y; Iseki S
    Mech Dev; 2008; 125(9-10):797-808. PubMed ID: 18617001
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Pdgfrα functions in endothelial-derived cells to regulate neural crest cells and the development of the great arteries.
    Aghajanian H; Cho YK; Rizer NW; Wang Q; Li L; Degenhardt K; Jain R
    Dis Model Mech; 2017 Sep; 10(9):1101-1108. PubMed ID: 28714851
    [TBL] [Abstract][Full Text] [Related]  

  • 48. TGFbeta-mediated FGF signaling is crucial for regulating cranial neural crest cell proliferation during frontal bone development.
    Sasaki T; Ito Y; Bringas P; Chou S; Urata MM; Slavkin H; Chai Y
    Development; 2006 Jan; 133(2):371-81. PubMed ID: 16368934
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Involvement of neural crest and paraxial mesoderm in oral mucosal development and healing.
    Isaac J; Nassif A; Asselin A; Taïhi I; Fohrer-Ting H; Klein C; Gogly B; Berdal A; Robert B; Fournier BP
    Biomaterials; 2018 Jul; 172():41-53. PubMed ID: 29715594
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Signals and switches in Mammalian neural crest cell differentiation.
    Bhatt S; Diaz R; Trainor PA
    Cold Spring Harb Perspect Biol; 2013 Feb; 5(2):. PubMed ID: 23378583
    [TBL] [Abstract][Full Text] [Related]  

  • 51. EphA4 as an effector of Twist1 in the guidance of osteogenic precursor cells during calvarial bone growth and in craniosynostosis.
    Ting MC; Wu NL; Roybal PG; Sun J; Liu L; Yen Y; Maxson RE
    Development; 2009 Mar; 136(5):855-64. PubMed ID: 19201948
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Inactivation of Msx1 and Msx2 in neural crest reveals an unexpected role in suppressing heterotopic bone formation in the head.
    Roybal PG; Wu NL; Sun J; Ting MC; Schafer CA; Maxson RE
    Dev Biol; 2010 Jul; 343(1-2):28-39. PubMed ID: 20398647
    [TBL] [Abstract][Full Text] [Related]  

  • 53. SRF regulates craniofacial development through selective recruitment of MRTF cofactors by PDGF signaling.
    Vasudevan HN; Soriano P
    Dev Cell; 2014 Nov; 31(3):332-344. PubMed ID: 25453829
    [TBL] [Abstract][Full Text] [Related]  

  • 54. FGF/MAPK signaling is required in the gastrula epiblast for avian neural crest induction.
    Stuhlmiller TJ; García-Castro MI
    Development; 2012 Jan; 139(2):289-300. PubMed ID: 22129830
    [TBL] [Abstract][Full Text] [Related]  

  • 55. trkC-mediated NT-3 signaling is required for the early development of a subpopulation of neurogenic neural crest cells.
    Henion PD; Garner AS; Large TH; Weston JA
    Dev Biol; 1995 Dec; 172(2):602-13. PubMed ID: 8612975
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Integration of multiple signaling pathways determines differences in the osteogenic potential and tissue regeneration of neural crest-derived and mesoderm-derived calvarial bones.
    Senarath-Yapa K; Li S; Meyer NP; Longaker MT; Quarto N
    Int J Mol Sci; 2013 Mar; 14(3):5978-97. PubMed ID: 23502464
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The potential of mouse skin-derived precursors to differentiate into mesenchymal and neural lineages and their application to osteogenic induction in vivo.
    Kang HK; Min SK; Jung SY; Jung K; Jang DH; Kim OB; Chun GS; Lee ZH; Min BM
    Int J Mol Med; 2011 Dec; 28(6):1001-11. PubMed ID: 21879252
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Receptor tyrosine kinase-dependent neural crest migration in response to differentially localized growth factors.
    Wehrle-Haller B; Weston JA
    Bioessays; 1997 Apr; 19(4):337-45. PubMed ID: 9136631
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Differential requirements of BMP and Wnt signalling during gastrulation and neurulation define two steps in neural crest induction.
    Steventon B; Araya C; Linker C; Kuriyama S; Mayor R
    Development; 2009 Mar; 136(5):771-9. PubMed ID: 19176585
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Respective contribution of the cephalic neural crest and mesoderm to SIX1-expressing head territories in the avian embryo.
    Fonseca BF; Couly G; Dupin E
    BMC Dev Biol; 2017 Oct; 17(1):13. PubMed ID: 29017464
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.