BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

635 related articles for article (PubMed ID: 36606637)

  • 1. Integrating genomics and genome editing for orphan crop improvement: a bridge between orphan crops and modern agriculture system.
    Yaqoob H; Tariq A; Bhat BA; Bhat KA; Nehvi IB; Raza A; Djalovic I; Prasad PV; Mir RA
    GM Crops Food; 2023 Dec; 14(1):1-20. PubMed ID: 36606637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid improvement of domestication traits in an orphan crop by genome editing.
    Lemmon ZH; Reem NT; Dalrymple J; Soyk S; Swartwood KE; Rodriguez-Leal D; Van Eck J; Lippman ZB
    Nat Plants; 2018 Oct; 4(10):766-770. PubMed ID: 30287957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution and Application of Genome Editing Techniques for Achieving Food and Nutritional Security.
    Fiaz S; Ahmar S; Saeed S; Riaz A; Mora-Poblete F; Jung KH
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34070430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR/Cas systems: opportunities and challenges for crop breeding.
    Biswas S; Zhang D; Shi J
    Plant Cell Rep; 2021 Jun; 40(6):979-998. PubMed ID: 33977326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards CRISPR/Cas crops - bringing together genomics and genome editing.
    Scheben A; Wolter F; Batley J; Puchta H; Edwards D
    New Phytol; 2017 Nov; 216(3):682-698. PubMed ID: 28762506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing the quality of staple food crops through CRISPR/Cas-mediated site-directed mutagenesis.
    Adeyinka OS; Tabassum B; Koloko BL; Ogungbe IV
    Planta; 2023 Mar; 257(4):78. PubMed ID: 36913066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Putting CRISPR-Cas system in action: a golden window for efficient and precise genome editing for crop improvement.
    Tariq A; Mushtaq M; Yaqoob H; Bhat BA; Zargar SM; Raza A; Ali S; Charagh S; Mubarik MS; Zaman QU; Prasad PV; Mir RA
    GM Crops Food; 2023 Dec; 14(1):1-27. PubMed ID: 37288976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Critical Review: Recent Advancements in the Use of CRISPR/Cas9 Technology to Enhance Crops and Alleviate Global Food Crises.
    Rasheed A; Gill RA; Hassan MU; Mahmood A; Qari S; Zaman QU; Ilyas M; Aamer M; Batool M; Li H; Wu Z
    Curr Issues Mol Biol; 2021 Nov; 43(3):1950-1976. PubMed ID: 34889892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome editing as a tool to achieve the crop ideotype and de novo domestication of wild relatives: Case study in tomato.
    Zsögön A; Cermak T; Voytas D; Peres LE
    Plant Sci; 2017 Mar; 256():120-130. PubMed ID: 28167025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perspectives on the Application of Genome-Editing Technologies in Crop Breeding.
    Hua K; Zhang J; Botella JR; Ma C; Kong F; Liu B; Zhu JK
    Mol Plant; 2019 Aug; 12(8):1047-1059. PubMed ID: 31260812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR/Cas9 Technology and Its Utility for Crop Improvement.
    Liu H; Chen W; Li Y; Sun L; Chai Y; Chen H; Nie H; Huang C
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR/Cas Genome Editing and Precision Plant Breeding in Agriculture.
    Chen K; Wang Y; Zhang R; Zhang H; Gao C
    Annu Rev Plant Biol; 2019 Apr; 70():667-697. PubMed ID: 30835493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR/Cas9 gene editing technology: a precise and efficient tool for crop quality improvement.
    Guo Y; Zhao G; Gao X; Zhang L; Zhang Y; Cai X; Yuan X; Guo X
    Planta; 2023 Jul; 258(2):36. PubMed ID: 37395789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prospects of Feral Crop De Novo Redomestication.
    Pisias MT; Bakala HS; McAlvay AC; Mabry ME; Birchler JA; Yang B; Pires JC
    Plant Cell Physiol; 2022 Nov; 63(11):1641-1653. PubMed ID: 35639623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Future-Proofing Agriculture: De Novo Domestication for Sustainable and Resilient Crops.
    Rogo U; Simoni S; Fambrini M; Giordani T; Pugliesi C; Mascagni F
    Int J Mol Sci; 2024 Feb; 25(4):. PubMed ID: 38397047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advanced domestication: harnessing the precision of gene editing in crop breeding.
    Lyzenga WJ; Pozniak CJ; Kagale S
    Plant Biotechnol J; 2021 Apr; 19(4):660-670. PubMed ID: 33657682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Progresses of CRISPR/Cas9 genome editing in forage crops.
    Ul Haq SI; Zheng D; Feng N; Jiang X; Qiao F; He JS; Qiu QS
    J Plant Physiol; 2022 Dec; 279():153860. PubMed ID: 36371870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designing future crops: challenges and strategies for sustainable agriculture.
    Tian Z; Wang JW; Li J; Han B
    Plant J; 2021 Mar; 105(5):1165-1178. PubMed ID: 33258137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetics and breeding for climate change in Orphan crops.
    Kamenya SN; Mikwa EO; Song B; Odeny DA
    Theor Appl Genet; 2021 Jun; 134(6):1787-1815. PubMed ID: 33486565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR-Based Genome Editing Tools: An Accelerator in Crop Breeding for a Changing Future.
    Zhang F; Neik TX; Thomas WJW; Batley J
    Int J Mol Sci; 2023 May; 24(10):. PubMed ID: 37239967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.