These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 36606791)
61. Geographical discrimination and adulteration analysis for edible oils using two-dimensional correlation spectroscopy and convolutional neural networks (CNNs). Liu Y; Yao L; Xia Z; Gao Y; Gong Z Spectrochim Acta A Mol Biomol Spectrosc; 2021 Feb; 246():118973. PubMed ID: 33017793 [TBL] [Abstract][Full Text] [Related]
62. Yao M; Fu G; Xu J; Li T; Zhang L; Liu M; Yang P; Xu Y; Rao H Appl Opt; 2021 Jul; 60(20):5846-5853. PubMed ID: 34263804 [TBL] [Abstract][Full Text] [Related]
63. Construction of a predictive model for concentration of nickel and vanadium in vacuum residues of crude oils using artificial neural networks and LIBS. Tarazona JL; Guerrero J; Cabanzo R; Mejía-Ospino E Appl Opt; 2012 Mar; 51(7):B108-14. PubMed ID: 22410907 [TBL] [Abstract][Full Text] [Related]
64. [Analysis of distribution and contents of heavy metal pollution in fish body with laser-induced breaddown spectroscopy]. Wan X; Wang JY; Ye JH; Wang P; Zhang ZM Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Jan; 33(1):206-9. PubMed ID: 23586257 [TBL] [Abstract][Full Text] [Related]
65. Raman spectroscopy coupled with chemometric methods for the discrimination of foreign fats and oils in cream and yogurt. Karacaglar NNY; Bulat T; Boyaci IH; Topcu A J Food Drug Anal; 2019 Jan; 27(1):101-110. PubMed ID: 30648563 [TBL] [Abstract][Full Text] [Related]
66. Quantitative analysis of coal quality by laser-induced breakdown spectroscopy assisted with different chemometric methods. Zhang Y; Xiong Z; Ma Y; Zhu C; Zhou R; Li X; Li Q; Zeng Q Anal Methods; 2020 Jul; 12(27):3530-3536. PubMed ID: 32672299 [TBL] [Abstract][Full Text] [Related]
67. Analytical-performance improvement of laser-induced breakdown spectroscopy for the processing degree of wheat flour using a continuous wavelet transform. Yang P; Zhu Y; Tang S; Hao Z; Guo L; Li X; Lu Y; Zeng X Appl Opt; 2018 May; 57(14):3730-3737. PubMed ID: 29791344 [TBL] [Abstract][Full Text] [Related]
68. Rapid analysis of pharmaceutical drugs using LIBS coupled with multivariate analysis. Tiwari PK; Awasthi S; Kumar R; Anand RK; Rai PK; Rai AK Lasers Med Sci; 2018 Feb; 33(2):263-270. PubMed ID: 29080007 [TBL] [Abstract][Full Text] [Related]
69. Combining prior knowledge with input selection algorithms for quantitative analysis using neural networks in laser induced breakdown spectroscopy. Luarte D; Myakalwar AK; Velásquez M; Álvarez J; Sandoval C; Fuentes R; Yañez J; Sbarbaro D Anal Methods; 2021 Mar; 13(9):1181-1190. PubMed ID: 33600544 [TBL] [Abstract][Full Text] [Related]
70. High-resolution (13)C nuclear magnetic resonance spectroscopy pattern recognition of fish oil capsules. Aursand M; Standal IB; Axelson DE J Agric Food Chem; 2007 Jan; 55(1):38-47. PubMed ID: 17199311 [TBL] [Abstract][Full Text] [Related]
71. Prospects for laser-induced breakdown spectroscopy for biomedical applications: a review. Singh VK; Rai AK Lasers Med Sci; 2011 Sep; 26(5):673-87. PubMed ID: 21533560 [TBL] [Abstract][Full Text] [Related]
72. Laser-induced breakdown spectroscopy for the classification of unknown powders. Snyder EG; Munson CA; Gottfried JL; De Lucia FC; Gullett B; Miziolek A Appl Opt; 2008 Nov; 47(31):G80-7. PubMed ID: 19122707 [TBL] [Abstract][Full Text] [Related]
73. Time-resolved spectral-image laser-induced breakdown spectroscopy for precise qualitative and quantitative analysis of milk powder quality by fully excavating the matrix information. Zhang D; Nie J; Niu X; Chen F; Hu Z; Wen X; Li Y; Guo L Food Chem; 2022 Aug; 386():132763. PubMed ID: 35364495 [TBL] [Abstract][Full Text] [Related]
74. Analysis and classification of heterogeneous kidney stones using laser-induced breakdown spectroscopy (LIBS). Oztoprak BG; Gonzalez J; Yoo J; Gulecen T; Mutlu N; Russo RE; Gundogdu O; Demir A Appl Spectrosc; 2012 Nov; 66(11):1353-61. PubMed ID: 23146192 [TBL] [Abstract][Full Text] [Related]
75. Fast Quantification of Honey Adulteration with Laser-Induced Breakdown Spectroscopy and Chemometric Methods. Peng J; Xie W; Jiang J; Zhao Z; Zhou F; Liu F Foods; 2020 Mar; 9(3):. PubMed ID: 32183396 [TBL] [Abstract][Full Text] [Related]
76. Determining quality of caviar from Caspian Sea based on Raman spectroscopy and using artificial neural networks. Mohamadi Monavar H; Afseth NK; Lozano J; Alimardani R; Omid M; Wold JP Talanta; 2013 Jul; 111():98-104. PubMed ID: 23622531 [TBL] [Abstract][Full Text] [Related]
77. Rapid classification of whole milk powder and skimmed milk powder by laser-induced breakdown spectroscopy combined with feature processing method and logistic regression. Ding Y; Chen WJ; Chen J; Yang LY; Wang YF; Zhao XQ; Hu A; Shu Y; Zhao ML Anal Sci; 2024 Mar; 40(3):399-411. PubMed ID: 38079106 [TBL] [Abstract][Full Text] [Related]
78. [Rapid Soil Classification with Laser Induced Breakdown Spectroscopy]. Meng DS; Zhao NJ; Ma MJ; Gu YH; Yu Y; Fang L; Wang YY; Jia Y; Liu WQ; Liu JG Guang Pu Xue Yu Guang Pu Fen Xi; 2017 Jan; 37(1):241-6. PubMed ID: 30221505 [TBL] [Abstract][Full Text] [Related]
79. A novel approach for discovering correlations between elemental and molecular composition using laser-based spectroscopic techniques. Sushkov NI; Galbács G; Fintor K; Lobus NV; Labutin TA Analyst; 2022 Jul; 147(14):3248-3257. PubMed ID: 35670418 [TBL] [Abstract][Full Text] [Related]