BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 36606828)

  • 1. Multiplane holographic augmented reality head-up display with a real-virtual dual mode and large eyebox.
    Lv Z; Xu Y; Yang Y; Liu J
    Appl Opt; 2022 Nov; 61(33):9962-9971. PubMed ID: 36606828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Holographic multiplane augmented reality head-up display with switchable display modes based on polymer dispersed liquid crystal.
    Wang Z; Pang Y; Su Y; Feng Q; Lv G
    Appl Opt; 2024 Jan; 63(3):692-698. PubMed ID: 38294381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compact dual-focal augmented reality head-up display using a single picture generation unit with polarization multiplexing.
    Liu Y; Dong J; Qiu Y; Yang BR; Qin Z
    Opt Express; 2023 Oct; 31(22):35922-35936. PubMed ID: 38017753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Eyebox enlargement in holographic AR glasses.
    Kalinina A; Putilin A; Kopenkin S
    Appl Opt; 2023 Apr; 62(10):D163-D170. PubMed ID: 37132782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Projection-type see-through near-to-eye display with a passively enlarged eye-box by combining a holographic lens and diffuser.
    Yeom J; Hong J; Jeong J
    Opt Express; 2021 Oct; 29(22):36005-36020. PubMed ID: 34809022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-resolution augmented reality 3D display with use of a lenticular lens array holographic optical element.
    Deng H; Chen C; He MY; Li JJ; Zhang HL; Wang QH
    J Opt Soc Am A Opt Image Sci Vis; 2019 Apr; 36(4):588-593. PubMed ID: 31044978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual-focal-plane augmented reality head-up display using a single picture generation unit and a single freeform mirror.
    Qin Z; Lin SM; Luo KT; Chen CH; Huang YP
    Appl Opt; 2019 Jul; 58(20):5366-5374. PubMed ID: 31504004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conjugate wavefront encoding: an efficient eyebox extension approach for holographic Maxwellian near-eye display.
    Wang Z; Zhang X; Lv G; Feng Q; Wang A; Ming H
    Opt Lett; 2021 Nov; 46(22):5623-5626. PubMed ID: 34780421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and fabricate freeform holographic optical elements on curved optical surfaces using holographic printing.
    Shu T; Pei C; Wu R; Li H; Liu X
    Opt Lett; 2023 Dec; 48(24):6537-6540. PubMed ID: 38099793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Holographic display for see-through augmented reality using mirror-lens holographic optical element.
    Li G; Lee D; Jeong Y; Cho J; Lee B
    Opt Lett; 2016 Jun; 41(11):2486-9. PubMed ID: 27244395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Holographic curved waveguide combiner for HUD/AR with 1-D pupil expansion.
    Draper CT; Blanche PA
    Opt Express; 2022 Jan; 30(2):2503-2516. PubMed ID: 35209388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring angular-steering illumination-based eyebox expansion for holographic displays.
    Xia X; Wang W; Guan F; Yang F; Shui X; Zheng H; Yu Y; Peng Y
    Opt Express; 2023 Sep; 31(19):31563-31573. PubMed ID: 37710671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical see-through Maxwellian near-to-eye display with an enlarged eyebox.
    Kim SB; Park JH
    Opt Lett; 2018 Feb; 43(4):767-770. PubMed ID: 29443989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compact design for optical-see-through holographic displays employing holographic optical elements.
    Zhou P; Li Y; Liu S; Su Y
    Opt Express; 2018 Sep; 26(18):22866-22876. PubMed ID: 30184944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical see-through holographic near-eye-display with eyebox steering and depth of field control.
    Park JH; Kim SB
    Opt Express; 2018 Oct; 26(21):27076-27088. PubMed ID: 30469782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using high-diffraction-efficiency holographic optical elements in a full-color augmented reality display system.
    He L; Chen X; Yang Y; Liu X; Chen Y; Xu L; Gu C
    Opt Express; 2023 Aug; 31(18):29843-29858. PubMed ID: 37710775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lensless full-color holographic Maxwellian near-eye display with a horizontal eyebox expansion.
    Wang Z; Zhang X; Tu K; Lv G; Feng Q; Wang A; Ming H
    Opt Lett; 2021 Sep; 46(17):4112-4115. PubMed ID: 34469952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compact full-color augmented reality near-eye display using freeform optics and a holographic optical combiner.
    Shu T; Hu G; Wu R; Li H; Zhang Z; Liu X
    Opt Express; 2022 Aug; 30(18):31714-31727. PubMed ID: 36242248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational holographic Maxwellian near-eye display with an expanded eyebox.
    Chang C; Cui W; Park J; Gao L
    Sci Rep; 2019 Dec; 9(1):18749. PubMed ID: 31822770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lens array-based holographic 3D display with an expanded field of view and eyebox.
    Wang Z; Lv G; Pang Y; Feng Q; Wang A; Ming H
    Opt Lett; 2023 Nov; 48(21):5559-5562. PubMed ID: 37910702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.