These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 36606838)

  • 1. Efficiency enhancement of ultrathin CIGS solar cells by optimal bandgap grading. Part II: finite-difference algorithm and double-layer antireflection coatings.
    Ahmad F; Civiletti BJ; Monk PB; Lakhtakia A
    Appl Opt; 2022 Nov; 61(33):10049-10061. PubMed ID: 36606838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficiency enhancement of ultrathin CIGS solar cells by optimal bandgap grading. Part III: piecewise-homogeneous grading.
    Ahmad F; Monk PB; Lakhtakia A
    Appl Opt; 2024 Apr; 63(11):2831-2836. PubMed ID: 38856378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optoelectronic optimization of graded-bandgap thin-film AlGaAs solar cells. Part II: optimal antireflection front-surface texturing.
    Ahmad F; Monk PB; Lakhtakia A
    Appl Opt; 2023 Oct; 62(28):7487-7495. PubMed ID: 37855518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficiency enhancement of ultrathin CIGS solar cells by optimal bandgap grading.
    Ahmad F; Anderson TH; Monk PB; Lakhtakia A
    Appl Opt; 2019 Aug; 58(22):6067-6078. PubMed ID: 31503927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optoelectronic optimization of graded-bandgap thin-film AlGaAs solar cells.
    Ahmad F; Lakhtakia A; Monk PB
    Appl Opt; 2020 Feb; 59(4):1018-1027. PubMed ID: 32225246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced efficiency of graded-bandgap thin-film solar cells due to concentrated sunlight.
    Ahmad F; Lakhtakia A; Monk PB
    Appl Opt; 2021 Dec; 60(34):10570-10578. PubMed ID: 35200916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical simulation of quantum dots as a buffer layer in CIGS solar cells: a comparative study.
    Abdulghani ZR; Najm AS; Holi AM; Al-Zahrani AA; Al-Zahrani KS; Moria H
    Sci Rep; 2022 May; 12(1):8099. PubMed ID: 35577846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cocktails of paste coatings for performance enhancement of CuInGaS(2) thin-film solar cells.
    An HS; Cho Y; Park SJ; Jeon HS; Hwang YJ; Kim DW; Min BK
    ACS Appl Mater Interfaces; 2014 Jan; 6(2):888-93. PubMed ID: 24377257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficiency enhancement of ultrathin CIGS solar cells by optimal bandgap grading: erratum.
    Ahmad F; Anderson TH; Monk PB; Lakhtakia A
    Appl Opt; 2020 Mar; 59(8):2615. PubMed ID: 32225813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvement of the Electrical Properties of a Cu(In,Ga)Se₂ Solar Cell Based on a ZnS Buffer Layer from Radio Frequency Magnetron Sputtering.
    Kim HS; Kim G; Kim E; Cho SJ; Lee DJ; Choi SG; Shan F; Kim SJ
    J Nanosci Nanotechnol; 2019 Mar; 19(3):1799-1803. PubMed ID: 30469270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural, Electrical, and Optical Properties of ZnO Film Used as Buffer Layer for CIGS Thin-Film Solar Cell.
    Choi EC; Cha JH; Jung DY; Hong B
    J Nanosci Nanotechnol; 2016 May; 16(5):5087-91. PubMed ID: 27483877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proposal and Design of Flexible All-Polymer/CIGS Tandem Solar Cell.
    Alanazi TI; El Sabbagh M
    Polymers (Basel); 2023 Apr; 15(8):. PubMed ID: 37111970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-graded CIGS with narrow bandgap for tandem solar cells.
    Feurer T; Bissig B; Weiss TP; Carron R; Avancini E; Löckinger J; Buecheler S; Tiwari AN
    Sci Technol Adv Mater; 2018; 19(1):263-270. PubMed ID: 29707066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-antireflective scheme for efficiency enhancement of Cu(In,Ga)Se2 nanotip array solar cells.
    Liao YK; Wang YC; Yen YT; Chen CH; Hsieh DH; Chen SC; Lee CY; Lai CC; Kuo WC; Juang JY; Wu KH; Cheng SJ; Lai CH; Lai FI; Kuo SY; Kuo HC; Chueh YL
    ACS Nano; 2013 Aug; 7(8):7318-29. PubMed ID: 23906340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron-Selective TiO2 Contact for Cu(In,Ga)Se2 Solar Cells.
    Hsu W; Sutter-Fella CM; Hettick M; Cheng L; Chan S; Chen Y; Zeng Y; Zheng M; Wang HP; Chiang CC; Javey A
    Sci Rep; 2015 Nov; 5():16028. PubMed ID: 26526426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Broadband omnidirectional antireflection coatings for metal-backed solar cells optimized using simulated annealing algorithm incorporated with solar spectrum.
    Chang YJ; Chen YT
    Opt Express; 2011 Jul; 19 Suppl 4():A875-87. PubMed ID: 21747557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of Intrinsic ZnO Thickness in Cu(In,Ga)Se
    Alhammadi S; Park H; Kim WK
    Materials (Basel); 2019 Apr; 12(9):. PubMed ID: 31035494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alkali Metal Pretreatment for Precise Na Doping and
    Shao X; Shi S; Liang B; Chen L; Qi T; Yuan X; Yu S; Tang W; Yang C; Li W
    ACS Appl Mater Interfaces; 2024 Jun; 16(23):30147-30156. PubMed ID: 38822780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomic Layer Deposition of Ultrathin ZnO Films for Hybrid Window Layers for Cu(In
    Lee J; Jeon DH; Hwang DK; Yang KJ; Kang JK; Sung SJ; Park H; Kim DH
    Nanomaterials (Basel); 2021 Oct; 11(11):. PubMed ID: 34835545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defect Analysis of Solution-Based Process CIGS Thin-Film Solar Cells Using Technology Computer-Aided Design.
    Lee S; Lee J; Lee Y; Park GS; Kim MK; Min BK; Shin M
    J Nanosci Nanotechnol; 2019 Oct; 19(10):6601-6608. PubMed ID: 31026998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.