These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 36606902)

  • 1. Digital histology of tissue with Mueller microscopy and FastDBSCAN.
    Lee HR; Lotz C; Kai Groeber Becker F; Dembski S; Novikova T
    Appl Opt; 2022 Nov; 61(32):9616-9624. PubMed ID: 36606902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Digital histology with Mueller microscopy: how to mitigate an impact of tissue cut thickness fluctuations.
    Lee HR; Li P; Yoo TSH; Lotz C; Groeber-Becker FK; Dembski S; Garcia-Caurel E; Ossikovski R; Ma H; Novikova T
    J Biomed Opt; 2019 Jul; 24(7):1-9. PubMed ID: 31347339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MRI Brain Tumour Segmentation Using Hybrid Clustering and Classification by Back Propagation Algorithm.
    M M; P S
    Asian Pac J Cancer Prev; 2018 Nov; 19(11):3257-3263. PubMed ID: 30486629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of breast percent density in raw and processed full field digital mammography images via adaptive fuzzy c-means clustering and support vector machine segmentation.
    Keller BM; Nathan DL; Wang Y; Zheng Y; Gee JC; Conant EF; Kontos D
    Med Phys; 2012 Aug; 39(8):4903-17. PubMed ID: 22894417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust kernelized local information fuzzy C-means clustering for brain magnetic resonance image segmentation.
    Elazab A; AbdulAzeem YM; Wu S; Hu Q
    J Xray Sci Technol; 2016 Mar; 24(3):489-507. PubMed ID: 27257884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Image quilting and wavelet fusion for creation of synthetic microscopy nuclei images.
    Glotsos D; Kostopoulos S; Ravazoula P; Cavouras D
    Comput Methods Programs Biomed; 2018 Aug; 162():177-186. PubMed ID: 29903484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated brain tumor segmentation using spatial accuracy-weighted hidden Markov Random Field.
    Nie J; Xue Z; Liu T; Young GS; Setayesh K; Guo L; Wong ST
    Comput Med Imaging Graph; 2009 Sep; 33(6):431-41. PubMed ID: 19446435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast and accurate tumor segmentation of histology images using persistent homology and deep convolutional features.
    Qaiser T; Tsang YW; Taniyama D; Sakamoto N; Nakane K; Epstein D; Rajpoot N
    Med Image Anal; 2019 Jul; 55():1-14. PubMed ID: 30991188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Motion Quantification and Automated Correction in Clinical RSOM.
    Aguirre J; Berezhnoi A; He H; Schwarz M; Hindelang B; Omar M; Ntziachristos V
    IEEE Trans Med Imaging; 2019 Jun; 38(6):1340-1346. PubMed ID: 30676947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Micro-Net: A unified model for segmentation of various objects in microscopy images.
    Raza SEA; Cheung L; Shaban M; Graham S; Epstein D; Pelengaris S; Khan M; Rajpoot NM
    Med Image Anal; 2019 Feb; 52():160-173. PubMed ID: 30580111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. fastER: a user-friendly tool for ultrafast and robust cell segmentation in large-scale microscopy.
    Hilsenbeck O; Schwarzfischer M; Loeffler D; Dimopoulos S; Hastreiter S; Marr C; Theis FJ; Schroeder T
    Bioinformatics; 2017 Jul; 33(13):2020-2028. PubMed ID: 28334115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast Segmentation of Vertebrae CT Image Based on the SNIC Algorithm.
    Li B; Wu S; Zhang S; Liu X; Li G
    Tomography; 2022 Jan; 8(1):59-76. PubMed ID: 35076637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A fast, fully automated cell segmentation algorithm for high-throughput and high-content screening.
    Fenistein D; Lenseigne B; Christophe T; Brodin P; Genovesio A
    Cytometry A; 2008 Oct; 73(10):958-64. PubMed ID: 18752283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast processing of microscopic images using object-based extended depth of field.
    Intarapanich A; Kaewkamnerd S; Pannarut M; Shaw PJ; Tongsima S
    BMC Bioinformatics; 2016 Dec; 17(Suppl 19):516. PubMed ID: 28155648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Segmentation of skin lesions from digital images using joint statistical texture distinctiveness.
    Glaister J; Wong A; Clausi DA
    IEEE Trans Biomed Eng; 2014 Apr; 61(4):1220-30. PubMed ID: 24658246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hair segmentation using adaptive threshold from edge and branch length measures.
    Lee I; Du X; Anthony B
    Comput Biol Med; 2017 Oct; 89():314-324. PubMed ID: 28858647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous recovery of both bright and dim structures from noisy fluorescence microscopy images using a modified TV constraint.
    Xiao C; Smith ZJ; Chu K
    J Microsc; 2019 Jul; 275(1):24-35. PubMed ID: 31026068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A reproducible automated segmentation algorithm for corneal epithelium cell images from in vivo laser scanning confocal microscopy.
    Bullet J; Gaujoux T; Borderie V; Bloch I; Laroche L
    Acta Ophthalmol; 2014 Jun; 92(4):e312-6. PubMed ID: 24666958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic segmentation of skin cells in multiphoton data using multi-stage merging.
    Prinke P; Haueisen J; Klee S; Rizqie MQ; Supriyanto E; König K; Breunig HG; Piątek Ł
    Sci Rep; 2021 Jul; 11(1):14534. PubMed ID: 34267247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suspicious Lesion Segmentation on Brain, Mammograms and Breast MR Images Using New Optimized Spatial Feature Based Super-Pixel Fuzzy C-Means Clustering.
    Kumar SN; Fred AL; Varghese PS
    J Digit Imaging; 2019 Apr; 32(2):322-335. PubMed ID: 30402671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.