These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 36606905)

  • 1. Measuring atmospheric turbulence along folded paths using a laser-illuminated differential image motion monitor.
    Hanna R; Brown DM; Brown A; Baldwin K
    Appl Opt; 2022 Nov; 61(32):9646-9653. PubMed ID: 36606905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical simulation of a large area scintillometer and laser differential image motion monitor.
    Brown DM; Hanna RT; Brown AM; Hixson JG; Baldwin KC
    Appl Opt; 2022 Jan; 61(1):10-21. PubMed ID: 35200796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of a 4-aperture DIMM instrument for atmospheric coherence time estimation: an analytical development.
    Panahi M; Shomali R; Mollabashi M
    J Opt Soc Am A Opt Image Sci Vis; 2019 Apr; 36(4):655-664. PubMed ID: 31044987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laser differential image-motion monitor for characterization of turbulence during free-space optical communication tests.
    Brown DM; Juarez JC; Brown AM
    Appl Opt; 2013 Dec; 52(34):8402-10. PubMed ID: 24513845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atmospheric coherence time measurement by four-aperture DIMM defocus velocity technique.
    Panahi M; Shomali R; Mollabashi M; Rasouli S
    Appl Opt; 2019 Nov; 58(31):8673-8679. PubMed ID: 31873347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mean-square angle-of-arrival difference between two counter-propagating spherical waves in the presence of atmospheric turbulence.
    Chen C; Yang H; Tong S; Lou Y
    Opt Express; 2015 Sep; 23(19):24657-68. PubMed ID: 26406667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterodyne lidar returns in the turbulent atmosphere: performance evaluation of simulated systems.
    Belmonte A; Rye BJ
    Appl Opt; 2000 May; 39(15):2401-11. PubMed ID: 18345150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of atmospheric turbulence on heterodyne lidar performance.
    Belen'kii MS
    Appl Opt; 1993 Sep; 32(27):5368-72. PubMed ID: 20856346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-frequency mutual coherence function for Gaussian-beam pulses propagating along a horizontal path in weak anisotropic atmospheric turbulence.
    Chen C; Yang H; Tong S; Lou Y
    Appl Opt; 2015 Jun; 54(18):5797-804. PubMed ID: 26193032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of the atmosphere on laser beam propagation.
    Buck AL
    Appl Opt; 1967 Apr; 6(4):703-8. PubMed ID: 20057830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of branch points for a laser beam propagating through an uplink turbulent atmosphere.
    Ge XL; Liu X; Guo CS
    Opt Express; 2014 Mar; 22(6):6569-76. PubMed ID: 24664005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measuring anisotropy ellipse of atmospheric turbulence by intensity correlations of laser light.
    Wang F; Toselli I; Li J; Korotkova O
    Opt Lett; 2017 Mar; 42(6):1129-1132. PubMed ID: 28295065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical timing jitter due to atmospheric turbulence: comparison of frequency comb measurements to predictions from micrometeorological sensors.
    Caldwell ED; Swann WC; Ellis JL; Bodine MI; Mak C; Kuczun N; Newbury NR; Sinclair LC; Muschinski A; Rieker GB
    Opt Express; 2020 Aug; 28(18):26661-26675. PubMed ID: 32906936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of moiré technique to the measurement of the atmospheric turbulence parameters related to the angle of arrival fluctuations.
    Rasouli S; Tavassoly MT
    Opt Lett; 2006 Nov; 31(22):3276-8. PubMed ID: 17072395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wind and refractive-turbulence sensing using crossed laser beams.
    Wang TI; Clifford SF; Ochs GR
    Appl Opt; 1974 Nov; 13(11):2602-8. PubMed ID: 20134740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of atmospheric turbulence by narrow laser beams.
    Consortini A; Ronchi L; Stefanutti L
    Appl Opt; 1970 Nov; 9(11):2543-7. PubMed ID: 20094303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Space-time trellis coding with transmit laser selection for FSO links over strong atmospheric turbulence channels.
    García-Zambrana A; Castillo-Vázquez C; Castillo-Vázquez B
    Opt Express; 2010 Mar; 18(6):5356-66. PubMed ID: 20389550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Statistical properties of He-Ne laser radiation reflected through a turbulent atmosphere.
    Bensimon D; Englander A; Shtrikman S; Slatkine M; Treves D
    Appl Opt; 1981 Mar; 20(6):947-50. PubMed ID: 20309236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vertical and slanted sound propagation in the near-ground atmosphere: Coherence and distributions.
    Ostashev VE; Kamrath MJ; Wilson DK; White MJ; Hart CR; Finn A
    J Acoust Soc Am; 2021 Oct; 150(4):3109. PubMed ID: 34717482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coherent laser radar performance for general atmospheric refractive turbulence.
    Frehlich RG; Kavaya MJ
    Appl Opt; 1991 Dec; 30(36):5325-52. PubMed ID: 20717362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.