These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 36606930)

  • 1. Schlieren imaging and spectroscopic approximation of the rotational-vibrational temperatures of a microwave discharge igniter with a resonating cavity.
    Ikeda Y; Ofosu JA
    Appl Opt; 2022 Dec; 61(36):10707-10716. PubMed ID: 36606930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of 2.45 GHz Semiconductor Microwave System for Combustion Ignition Enhancement and Failure Analysis.
    Ikeda Y
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study on Microwave-Assisted Ignition Using a Novel Aero-Engine Combustor.
    Zhang Y; Zhao B; He L; Zeng H; Chang Y
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring microwave resonant multi-point ignition using high-speed schlieren imaging.
    Liu C; Zhang G; Xie H; Deng L; Wang Z
    Rev Sci Instrum; 2018 Mar; 89(3):034701. PubMed ID: 29604739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atmospheric air plasma sustainment by semiconductor microwave for hydroxyl radical production and powder metal element analysis.
    Ikeda Y
    Opt Express; 2022 Aug; 30(17):29868-29884. PubMed ID: 36242102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental Research on Microwave Ignition and Combustion Characteristics of ADN-Based Liquid Propellant.
    Shen J; Yu Y; Liu X; Cao J
    Micromachines (Basel); 2022 Mar; 13(4):. PubMed ID: 35457816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Schlieren-based temperature measurement inside the cylinder of an optical spark ignition and homogeneous charge compression ignition engine.
    Aleiferis P; Charalambides A; Hardalupas Y; Soulopoulos N; Taylor AM; Urata Y
    Appl Opt; 2015 May; 54(14):4566-79. PubMed ID: 25967518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contactless electric igniter for vehicle to lower exhaust emission and fuel consumption.
    Shen CL; Su JC
    ScientificWorldJournal; 2014; 2014():795180. PubMed ID: 24672372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Synergy Effect of Ignition Energy and Spark Plug Gap on Methane Lean Combustion with Addressing Initial Flame Formation and Cyclic Variation.
    Zhang X; Chen L
    ACS Omega; 2023 Feb; 8(7):7036-7044. PubMed ID: 36844584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental Study on Microwave-Assisted Ignition and Combustion Characteristics of ADN-Based Liquid Propellant.
    Hou Y; Yu Y; Liu X; Chen J; Zhang T
    ACS Omega; 2021 Sep; 6(35):22937-22944. PubMed ID: 34514264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic mechanism of molecular energy transfer and chemical reactions in low-temperature air-fuel plasmas.
    Adamovich IV; Li T; Lempert WR
    Philos Trans A Math Phys Eng Sci; 2015 Aug; 373(2048):. PubMed ID: 26170427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ignition of an automobile engine by high-peak power Nd:YAG/Cr⁴⁺:YAG laser-spark devices.
    Pavel N; Dascalu T; Salamu G; Dinca M; Boicea N; Birtas A
    Opt Express; 2015 Dec; 23(26):33028-37. PubMed ID: 26831972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compact microwave re-entrant cavity applicator for plasma-assisted combustion.
    Hemawan KW; Wichman IS; Lee T; Grotjohn TA; Asmussen J
    Rev Sci Instrum; 2009 May; 80(5):053507. PubMed ID: 19485507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of the early stages in laser-induced ignition by Schlieren photography and laser-induced fluorescence spectroscopy.
    Lackner M; Charareh S; Winter F; Iskra K; Rüdisser D; Neger T; Kopecek H; Wintner E
    Opt Express; 2004 Sep; 12(19):4546-57. PubMed ID: 19484006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Microwave Power and Gas Flow Rate on the Combustion Characteristics of the ADN-based Liquid Propellant.
    Pan S; Zhao C; Zhang D; Hou Y; Su G; Liu X; Yu Y; Shen J
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of Early Flame Kernel Growth by Multi-Wavelength Laser Pulses for Enhanced Ignition.
    Dumitrache C; VanOsdol R; Limbach CM; Yalin AP
    Sci Rep; 2017 Aug; 7(1):10239. PubMed ID: 28860467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resonant dual-pulse laser ignition technique based on oxygen REMPI pre-ionization.
    Dumitrache C; Butte C; Yalin A
    Sci Rep; 2020 Nov; 10(1):19916. PubMed ID: 33199812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characteristics of microwave plasma induced by lasers and sparks.
    Ikeda Y; Tsuruoka R
    Appl Opt; 2012 Mar; 51(7):B183-91. PubMed ID: 22410918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microwave-enhanced laser-induced air plasma at atmospheric pressure.
    Ikeda Y; Soriano JK
    Opt Express; 2022 Sep; 30(19):33756-33766. PubMed ID: 36242403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microwave-induced combustion: Thermal and morphological aspects for understanding the mechanism of ignition process for analytical applications.
    Pedrotti MF; Pereira LSF; Bizzi CA; Paniz JNG; Barin JS; Flores EMM
    Talanta; 2017 Nov; 174():64-71. PubMed ID: 28738635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.