These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 36606955)

  • 1. Single scattering models for radiative transfer of isotropic and cone-shaped light sources in fog.
    Geiger S; Liemert A; Reitzle D; Bijelic M; Ramazzina A; Ritter W; Heide F; Kienle A
    Opt Express; 2023 Jan; 31(1):125-142. PubMed ID: 36606955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of Multi-Scattered LiDAR Returns in Fog.
    Hevisov D; Liemert A; Reitzle D; Kienle A
    Sensors (Basel); 2024 Aug; 24(16):. PubMed ID: 39204818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Henyey-Greenstein and Mie phase functions in Monte Carlo radiative transfer computations.
    Toublanc D
    Appl Opt; 1996 Jun; 35(18):3270-4. PubMed ID: 21102712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Successive order, multiple scattering of two-term Henyey-Greenstein phase functions.
    Pfeiffer N; Chapman GH
    Opt Express; 2008 Sep; 16(18):13637-42. PubMed ID: 18772974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-scattering solutions to radiative transfer in infinite turbid media.
    Shendeleva ML
    J Opt Soc Am A Opt Image Sci Vis; 2013 Nov; 30(11):2169-74. PubMed ID: 24322913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aureole radiance field about a source in a scattering-absorbing medium.
    Zachor AS
    Appl Opt; 1978 Jun; 17(12):1911-22. PubMed ID: 20198093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of the Henyey-Greenstein phase function in Monte Carlo simulations in biomedical optics.
    Binzoni T; Leung TS; Gandjbakhche AH; Rüfenacht D; Delpy DT
    Phys Med Biol; 2006 Sep; 51(17):N313-22. PubMed ID: 16912370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new phase function approximating to Mie scattering for radiative transport equations.
    Liu P
    Phys Med Biol; 1994 Jun; 39(6):1025-36. PubMed ID: 15551577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of scattering error in spectrophotometric measurements of light absorption by aquatic particles from three-dimensional radiative transfer simulations.
    Stramski D; Piskozub J
    Appl Opt; 2003 Jun; 42(18):3634-46. PubMed ID: 12833969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acuros CTS: A fast, linear Boltzmann transport equation solver for computed tomography scatter - Part I: Core algorithms and validation.
    Maslowski A; Wang A; Sun M; Wareing T; Davis I; Star-Lack J
    Med Phys; 2018 May; 45(5):1899-1913. PubMed ID: 29509970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analytical solutions of the radiative transport equation for turbid and fluorescent layered media.
    Liemert A; Reitzle D; Kienle A
    Sci Rep; 2017 Jun; 7(1):3819. PubMed ID: 28630496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comment on 'the use of the Henyey-Greenstein phase function in Monte Carlo simulations in biomedical optics'.
    Binzoni T; Leung TS; Gandjbakhche AH; Rüfenacht D; Delpy DT
    Phys Med Biol; 2006 Nov; 51(22):L39-41. PubMed ID: 17068360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation of diffuse photon migration in tissue by a Monte Carlo method derived from the optical scattering of spheroids.
    Hart VP; Doyle TE
    Appl Opt; 2013 Sep; 52(25):6220-9. PubMed ID: 24085080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the accuracy of generalized Fokker-Planck transport equations in tissue optics.
    Phillips KG; Lancellotti C
    Appl Opt; 2009 Jan; 48(2):229-41. PubMed ID: 19137033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A deterministic partial differential equation model for dose calculation in electron radiotherapy.
    Duclous R; Dubroca B; Frank M
    Phys Med Biol; 2010 Jul; 55(13):3843-57. PubMed ID: 20571208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analytical solutions of the simplified spherical harmonics equations.
    Liemert A; Kienle A
    Opt Lett; 2010 Oct; 35(20):3507-9. PubMed ID: 20967115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of scattering anisotropy on the properties of photon density waves.
    Luchinin AG; Kirillin MY
    Appl Opt; 2021 Jan; 60(1):33-40. PubMed ID: 33362070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid Green's function of the time-dependent radiative transfer equation for anisotropically scattering semi-infinite media.
    Simon E; Foschum F; Kienle A
    J Biomed Opt; 2013 Jan; 18(1):15001. PubMed ID: 23292518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Illustration of diffusion and equipartitioning as local processes: A numerical study using the scalar radiative transfer equation.
    Jaimes M; Snieder R
    J Acoust Soc Am; 2023 Apr; 153(4):2148. PubMed ID: 37092931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heuristic Green's function of the time dependent radiative transfer equation for a semi-infinite medium.
    Martelli F; Sassaroli A; Pifferi A; Torricelli A; Spinelli L; Zaccanti G
    Opt Express; 2007 Dec; 15(26):18168-75. PubMed ID: 19551115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.