These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 36606959)

  • 1. Enhancing the force sensitivity of a squeezed light optomechanical interferometer.
    Subhash S; Das S; Dey TN; Li Y; Davuluri S
    Opt Express; 2023 Jan; 31(1):177-191. PubMed ID: 36606959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Squeezed-light-driven force detection with an optomechanical cavity in a Mach-Zehnder interferometer.
    Lee CW; Lee JH; Seok H
    Sci Rep; 2020 Oct; 10(1):17496. PubMed ID: 33060770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Squeezed vacuum interaction with an optomechanical cavity containing a quantum well.
    Jabri H; Eleuch H
    Sci Rep; 2022 Mar; 12(1):3658. PubMed ID: 35256636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum fisher information of an optomechanical force sensor driven by a squeezed vacuum field.
    Lee CW; Lee JH; Joo J; Seok H
    Opt Express; 2022 Jul; 30(14):25249-25261. PubMed ID: 36237059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optomechanical squeezing with pulse modulation.
    Xiong B; Chao S; Shan C; Liu J
    Opt Lett; 2022 Nov; 47(21):5545-5548. PubMed ID: 37219265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Squeezing transfer of light in a two-mode optomechanical system.
    Liu L; Hou BP; Zhao XH; Tang B
    Opt Express; 2019 Mar; 27(6):8361-8374. PubMed ID: 31052655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum optomechanics without the radiation pressure force noise.
    Davuluri S
    Opt Lett; 2021 Feb; 46(4):904-907. PubMed ID: 33577544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Squeezed light from a silicon micromechanical resonator.
    Safavi-Naeini AH; Gröblacher S; Hill JT; Chan J; Aspelmeyer M; Painter O
    Nature; 2013 Aug; 500(7461):185-9. PubMed ID: 23925241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum Phase Transitions in Optomechanical Systems.
    Wang B; Nori F; Xiang ZL
    Phys Rev Lett; 2024 Feb; 132(5):053601. PubMed ID: 38364134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beating the Standard Sensitivity-Bandwidth Limit of Cavity-Enhanced Interferometers with Internal Squeezed-Light Generation.
    Korobko M; Kleybolte L; Ast S; Miao H; Chen Y; Schnabel R
    Phys Rev Lett; 2017 Apr; 118(14):143601. PubMed ID: 28430507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sideband cooling beyond the quantum backaction limit with squeezed light.
    Clark JB; Lecocq F; Simmonds RW; Aumentado J; Teufel JD
    Nature; 2017 Jan; 541(7636):191-195. PubMed ID: 28079081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large mechanical squeezing beyond 3dB of hybrid atom-optomechanical systems in a highly unresolved sideband regime.
    Zhang JS; Chen AX
    Opt Express; 2020 Apr; 28(9):12827-12836. PubMed ID: 32403771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum Nondemolition Measurement of a Quantum Squeezed State Beyond the 3 dB Limit.
    Lei CU; Weinstein AJ; Suh J; Wollman EE; Kronwald A; Marquardt F; Clerk AA; Schwab KC
    Phys Rev Lett; 2016 Sep; 117(10):100801. PubMed ID: 27636463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation of multiqubit steady-state quantum correlation by squeezed-reservoir engineering.
    Hou QZ; You JB; Yang WL; An JH; Chen CY; Feng M
    Opt Express; 2018 Aug; 26(16):20459-20470. PubMed ID: 30119356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracavity Squeezing Can Enhance Quantum-Limited Optomechanical Position Detection through Deamplification.
    Peano V; Schwefel HG; Marquardt Ch; Marquardt F
    Phys Rev Lett; 2015 Dec; 115(24):243603. PubMed ID: 26705633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frequency-Dependent Squeezing for Advanced LIGO.
    McCuller L; Whittle C; Ganapathy D; Komori K; Tse M; Fernandez-Galiana A; Barsotti L; Fritschel P; MacInnis M; Matichard F; Mason K; Mavalvala N; Mittleman R; Yu H; Zucker ME; Evans M
    Phys Rev Lett; 2020 May; 124(17):171102. PubMed ID: 32412252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Squeezed Lasing.
    Sánchez Muñoz C; Jaksch D
    Phys Rev Lett; 2021 Oct; 127(18):183603. PubMed ID: 34767390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature-resistant generation of robust entanglement with blue-detuning driving and mechanical gain.
    Wang T; Wang L; Liu YM; Bai CH; Wang DY; Wang HF; Zhang S
    Opt Express; 2019 Oct; 27(21):29581-29593. PubMed ID: 31684217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ponderomotive Squeezing of Light by a Levitated Nanoparticle in Free Space.
    Militaru A; Rossi M; Tebbenjohanns F; Romero-Isart O; Frimmer M; Novotny L
    Phys Rev Lett; 2022 Jul; 129(5):053602. PubMed ID: 35960561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protection of Noise Squeezing in a Quantum Interferometer with Optimal Resource Allocation.
    Huang W; Liang X; Zhu B; Yan Y; Yuan CH; Zhang W; Chen LQ
    Phys Rev Lett; 2023 Feb; 130(7):073601. PubMed ID: 36867793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.