These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 36607060)
1. Polarized light compass decoding. Liang H; Chua Y; Wang J; Li Q; Yu F; Zhu M; Peng G Appl Opt; 2022 Nov; 61(31):9247-9255. PubMed ID: 36607060 [TBL] [Abstract][Full Text] [Related]
2. Polarized light compass-aided inertial navigation under discontinuous observations environment. Yang J; Xu X; Chen X; Wang Y; Liu R Opt Express; 2022 May; 30(11):19665-19683. PubMed ID: 36221737 [TBL] [Abstract][Full Text] [Related]
3. Polarized light sun position determination artificial neural network. Liang H; Bai H; Li Z; Cao Y Appl Opt; 2022 Feb; 61(6):1456-1463. PubMed ID: 35201031 [TBL] [Abstract][Full Text] [Related]
4. Design and calibration model of a bioinspired attitude and heading reference system based on compound eye polarization compass. Liu X; Yang J; Guo L; Yu X; Wang S Bioinspir Biomim; 2020 Nov; 16(1):016001. PubMed ID: 33150873 [TBL] [Abstract][Full Text] [Related]
5. Polarized skylight navigation in insects: model and electrophysiology of e-vector coding by neurons in the central complex. Sakura M; Lambrinos D; Labhart T J Neurophysiol; 2008 Feb; 99(2):667-82. PubMed ID: 18057112 [TBL] [Abstract][Full Text] [Related]
6. The brain behind straight-line orientation in dung beetles. El Jundi B; Baird E; Byrne MJ; Dacke M J Exp Biol; 2019 Feb; 222(Pt Suppl 1):. PubMed ID: 30728239 [TBL] [Abstract][Full Text] [Related]
7. Flight-induced compass representation in the monarch butterfly heading network. Beetz MJ; Kraus C; Franzke M; Dreyer D; Strube-Bloss MF; Rössler W; Warrant EJ; Merlin C; El Jundi B Curr Biol; 2022 Jan; 32(2):338-349.e5. PubMed ID: 34822766 [TBL] [Abstract][Full Text] [Related]
8. Interaction of compass sensing and object-motion detection in the locust central complex. Bockhorst T; Homberg U J Neurophysiol; 2017 Jul; 118(1):496-506. PubMed ID: 28404828 [TBL] [Abstract][Full Text] [Related]
9. Anticipatory Neural Activity Improves the Decoding Accuracy for Dynamic Head-Direction Signals. Zirkelbach J; Stemmler M; Herz AVM J Neurosci; 2019 Apr; 39(15):2847-2859. PubMed ID: 30692223 [TBL] [Abstract][Full Text] [Related]
10. A probabilistic recurrent neural network for decoding hind limb kinematics from multi-segment recordings of the dorsal horn neurons. Fathi Y; Erfanian A J Neural Eng; 2019 Jun; 16(3):036023. PubMed ID: 30849772 [TBL] [Abstract][Full Text] [Related]
11. Decoding sensorimotor information from superior parietal lobule of macaque via Convolutional Neural Networks. Filippini M; Borra D; Ursino M; Magosso E; Fattori P Neural Netw; 2022 Jul; 151():276-294. PubMed ID: 35452895 [TBL] [Abstract][Full Text] [Related]
12. Deep learning for neural decoding in motor cortex. Liu F; Meamardoost S; Gunawan R; Komiyama T; Mewes C; Zhang Y; Hwang E; Wang L J Neural Eng; 2022 Sep; 19(5):. PubMed ID: 36148535 [No Abstract] [Full Text] [Related]
13. Polarized skylight compass based on a soft-margin support vector machine working in cloudy conditions. Liang H; Bai H; Liu N; Sui X Appl Opt; 2020 Feb; 59(5):1271-1279. PubMed ID: 32225383 [TBL] [Abstract][Full Text] [Related]
14. Decoding movement direction from cortical microelectrode recordings using an LSTM-based neural network. Premchand B; Toe KK; Wang C; Shaikh S; Libedinsky C; Ang KK; So RQ Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3007-3010. PubMed ID: 33018638 [TBL] [Abstract][Full Text] [Related]
15. Local-learning-based neuron selection for grasping gesture prediction in motor brain machine interfaces. Xu K; Wang Y; Wang Y; Wang F; Hao Y; Zhang S; Zhang Q; Chen W; Zheng X J Neural Eng; 2013 Apr; 10(2):026008. PubMed ID: 23428877 [TBL] [Abstract][Full Text] [Related]
17. Decoding Color Visual Working Memory from EEG Signals Using Graph Convolutional Neural Networks. Che X; Zheng Y; Chen X; Song S; Li S Int J Neural Syst; 2022 Feb; 32(2):2250003. PubMed ID: 34895115 [TBL] [Abstract][Full Text] [Related]
18. Reconstruction of natural visual scenes from neural spikes with deep neural networks. Zhang Y; Jia S; Zheng Y; Yu Z; Tian Y; Ma S; Huang T; Liu JK Neural Netw; 2020 May; 125():19-30. PubMed ID: 32070853 [TBL] [Abstract][Full Text] [Related]
19. Convolutional neural networks for decoding of covert attention focus and saliency maps for EEG feature visualization. Farahat A; Reichert C; Sweeney-Reed CM; Hinrichs H J Neural Eng; 2019 Oct; 16(6):066010. PubMed ID: 31416059 [TBL] [Abstract][Full Text] [Related]