These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 36607181)

  • 1. Chemically Crosslinked Amphiphilic Degradable Shape Memory Polymer Nanocomposites with Readily Tuned Physical, Mechanical, and Biological Properties.
    Xu X; Skelly JD; Song J
    ACS Appl Mater Interfaces; 2023 Jan; 15(2):2693-2704. PubMed ID: 36607181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo tissue responses to thermal-responsive shape memory polymer nanocomposites.
    Filion TM; Xu J; Prasad ML; Song J
    Biomaterials; 2011 Feb; 32(4):985-91. PubMed ID: 21040968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid prototyping amphiphilic polymer/hydroxyapatite composite scaffolds with hydration-induced self-fixation behavior.
    Kutikov AB; Gurijala A; Song J
    Tissue Eng Part C Methods; 2015 Mar; 21(3):229-41. PubMed ID: 25025950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An amphiphilic degradable polymer/hydroxyapatite composite with enhanced handling characteristics promotes osteogenic gene expression in bone marrow stromal cells.
    Kutikov AB; Song J
    Acta Biomater; 2013 Sep; 9(9):8354-64. PubMed ID: 23791675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multifunctional scaffolds for facile implantation, spontaneous fixation, and accelerated long bone regeneration in rodents.
    Zhang B; Skelly JD; Maalouf JR; Ayers DC; Song J
    Sci Transl Med; 2019 Jul; 11(502):. PubMed ID: 31341064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rational design of gelatin/nanohydroxyapatite cryogel scaffolds for bone regeneration by introducing chemical and physical cues to enhance osteogenesis of bone marrow mesenchymal stem cells.
    Shalumon KT; Liao HT; Kuo CY; Wong CB; Li CJ; P A M; Chen JP
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109855. PubMed ID: 31500067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrospinning of poly(lactic acid)/polyhedral oligomeric silsesquioxane nanocomposites and their potential in chondrogenic tissue regeneration.
    Gomez-Sanchez C; Kowalczyk T; Ruiz De Eguino G; Lopez-Arraiza A; Infante A; Rodriguez CI; Kowalewski TA; Sarrionandia M; Aurrekoetxea J
    J Biomater Sci Polym Ed; 2014; 25(8):802-25. PubMed ID: 24754323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of genipin-crosslinked and fucoidan-adsorbed nano-hydroxyapatite/hydroxypropyl chitosan composite scaffolds for bone tissue engineering.
    Lu HT; Lu TW; Chen CH; Mi FL
    Int J Biol Macromol; 2019 May; 128():973-984. PubMed ID: 30738901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strong electroactive biodegradable shape memory polymer networks based on star-shaped polylactide and aniline trimer for bone tissue engineering.
    Xie M; Wang L; Ge J; Guo B; Ma PX
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6772-81. PubMed ID: 25742188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo biocompatibility and osteogenesis of electrospun poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone)/nano-hydroxyapatite composite scaffold.
    Fu S; Ni P; Wang B; Chu B; Peng J; Zheng L; Zhao X; Luo F; Wei Y; Qian Z
    Biomaterials; 2012 Nov; 33(33):8363-71. PubMed ID: 22921926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Templated repair of long bone defects in rats with bioactive spiral-wrapped electrospun amphiphilic polymer/hydroxyapatite scaffolds.
    Kutikov AB; Skelly JD; Ayers DC; Song J
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4890-901. PubMed ID: 25695310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A strong, tough, and osteoconductive hydroxyapatite mineralized polyacrylamide/dextran hydrogel for bone tissue regeneration.
    Fang J; Li P; Lu X; Fang L; Lü X; Ren F
    Acta Biomater; 2019 Apr; 88():503-513. PubMed ID: 30772515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Incorporation of a silicon-based polymer to PEG-DA templated hydrogel scaffolds for bioactivity and osteoinductivity.
    Frassica MT; Jones SK; Diaz-Rodriguez P; Hahn MS; Grunlan MA
    Acta Biomater; 2019 Nov; 99():100-109. PubMed ID: 31536841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro and in vivo bioactivity assessment of a polylactic acid/hydroxyapatite composite for bone regeneration.
    Danoux CB; Barbieri D; Yuan H; de Bruijn JD; van Blitterswijk CA; Habibovic P
    Biomatter; 2014; 4():e27664. PubMed ID: 24441389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration.
    Bharadwaz A; Jayasuriya AC
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110698. PubMed ID: 32204012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biocompatibility and bone-repairing effects: comparison between porous poly-lactic-co-glycolic acid and nano-hydroxyapatite/poly(lactic acid) scaffolds.
    Zong C; Qian X; Tang Z; Hu Q; Chen J; Gao C; Tang R; Tong X; Wang J
    J Biomed Nanotechnol; 2014 Jun; 10(6):1091-104. PubMed ID: 24749403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective laser sintering fabrication of nano-hydroxyapatite/poly-ε-caprolactone scaffolds for bone tissue engineering applications.
    Xia Y; Zhou P; Cheng X; Xie Y; Liang C; Li C; Xu S
    Int J Nanomedicine; 2013; 8():4197-213. PubMed ID: 24204147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The osteogenesis of bone marrow stem cells on mPEG-PCL-mPEG/hydroxyapatite composite scaffold via solid freeform fabrication.
    Liao HT; Chen YY; Lai YT; Hsieh MF; Jiang CP
    Biomed Res Int; 2014; 2014():321549. PubMed ID: 24868523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large defect-tailored composite scaffolds for in vivo bone regeneration.
    Ronca A; Guarino V; Raucci MG; Salamanna F; Martini L; Zeppetelli S; Fini M; Kon E; Filardo G; Marcacci M; Ambrosio L
    J Biomater Appl; 2014 Nov; 29(5):715-27. PubMed ID: 24951457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the novel three-dimensional porous poly (L-lactic acid)/nano-hydroxyapatite composite scaffold.
    Huang J; Xiong J; Liu J; Zhu W; Chen J; Duan L; Zhang J; Wang D
    Biomed Mater Eng; 2015; 26 Suppl 1():S197-205. PubMed ID: 26405972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.