These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 36607253)

  • 1. The Evolution of SNAP-Tag Labels.
    Dreyer R; Pfukwa R; Barth S; Hunter R; Klumperman B
    Biomacromolecules; 2023 Feb; 24(2):517-530. PubMed ID: 36607253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One-step site-specific antibody fragment auto-conjugation using SNAP-tag technology.
    Hussain AF; Heppenstall PA; Kampmeier F; Meinhold-Heerlein I; Barth S
    Nat Protoc; 2019 Nov; 14(11):3101-3125. PubMed ID: 31605098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescent labeling of COS-7 expressing SNAP-tag fusion proteins for live cell imaging.
    Provost CR; Sun L
    J Vis Exp; 2010 May; (39):. PubMed ID: 20485262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Releasable SNAP-tag probes for studying endocytosis and recycling.
    Cole NB; Donaldson JG
    ACS Chem Biol; 2012 Mar; 7(3):464-9. PubMed ID: 22216966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Site-specific protein labeling with SNAP-tags.
    Cole NB
    Curr Protoc Protein Sci; 2013 Sep; 73():30.1.1-30.1.16. PubMed ID: 24510614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of SNAP-tag fluorogenic probes for wash-free fluorescence imaging.
    Sun X; Zhang A; Baker B; Sun L; Howard A; Buswell J; Maurel D; Masharina A; Johnsson K; Noren CJ; Xu MQ; Corrêa IR
    Chembiochem; 2011 Sep; 12(14):2217-26. PubMed ID: 21793150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Benzylguanine thiol self-assembled monolayers for the immobilization of SNAP-tag proteins on microcontact-printed surface structures.
    Engin S; Trouillet V; Franz CM; Welle A; Bruns M; Wedlich D
    Langmuir; 2010 May; 26(9):6097-101. PubMed ID: 20369837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SNAP display: in vitro protein evolution in microdroplets.
    Kaltenbach M; Hollfelder F
    Methods Mol Biol; 2012; 805():101-11. PubMed ID: 22094803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conserved residue lysine165 is essential for the ability of O6-alkylguanine-DNA alkyltransferase to react with O6-benzylguanine.
    Xu-Welliver M; Kanugula S; Loktionova NA; Crone TM; Pegg AE
    Biochem J; 2000 Apr; 347(Pt 2):527-34. PubMed ID: 10749683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An engineered protein tag for multiprotein labeling in living cells.
    Gautier A; Juillerat A; Heinis C; Corrêa IR; Kindermann M; Beaufils F; Johnsson K
    Chem Biol; 2008 Feb; 15(2):128-36. PubMed ID: 18291317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Capturing Cell-Cell Interactions via SNAP-tag and CLIP-tag Technology.
    Hoehnel S; Lutolf MP
    Bioconjug Chem; 2015 Aug; 26(8):1678-86. PubMed ID: 26079967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Directed evolution of O6-alkylguanine-DNA alkyltransferase for applications in protein labeling.
    Gronemeyer T; Chidley C; Juillerat A; Heinis C; Johnsson K
    Protein Eng Des Sel; 2006 Jul; 19(7):309-16. PubMed ID: 16638797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of two novel tag-based labelling technologies for site-specific modification of proteins.
    Tirat A; Freuler F; Stettler T; Mayr LM; Leder L
    Int J Biol Macromol; 2006 Aug; 39(1-3):66-76. PubMed ID: 16503347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expanding the substrate selectivity of SNAP/CLIP-tagging of intracellular targets.
    Macias-Contreras M; Little KN; Zhu L
    Methods Enzymol; 2020; 638():233-257. PubMed ID: 32416915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quenched substrates for live-cell labeling of SNAP-tagged fusion proteins with improved fluorescent background.
    Stöhr K; Siegberg D; Ehrhard T; Lymperopoulos K; Öz S; Schulmeister S; Pfeifer AC; Bachmann J; Klingmüller U; Sourjik V; Herten DP
    Anal Chem; 2010 Oct; 82(19):8186-93. PubMed ID: 20815338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-specific, covalent labeling of recombinant antibody fragments via fusion to an engineered version of 6-O-alkylguanine DNA alkyltransferase.
    Kampmeier F; Ribbert M; Nachreiner T; Dembski S; Beaufils F; Brecht A; Barth S
    Bioconjug Chem; 2009 May; 20(5):1010-5. PubMed ID: 19388673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning the Reactivity of a Substrate for SNAP-Tag Expands Its Application for Recognition-Driven DNA-Protein Conjugation.
    Zhang Z; Nakata E; Dinh H; Saimura M; Rajendran A; Matsuda K; Morii T
    Chemistry; 2021 Dec; 27(72):18118-18128. PubMed ID: 34747070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic and Structural Characterization of the Self-Labeling Protein Tags HaloTag7, SNAP-tag, and CLIP-tag.
    Wilhelm J; Kühn S; Tarnawski M; Gotthard G; Tünnermann J; Tänzer T; Karpenko J; Mertes N; Xue L; Uhrig U; Reinstein J; Hiblot J; Johnsson K
    Biochemistry; 2021 Aug; 60(33):2560-2575. PubMed ID: 34339177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of a thermophilic O
    Rossi F; Morrone C; Massarotti A; Ferraris DM; Valenti A; Perugino G; Miggiano R
    Biochem Biophys Res Commun; 2018 Jun; 500(3):698-703. PubMed ID: 29684348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Point mutations at multiple sites including highly conserved amino acids maintain activity, but render O6-alkylguanine-DNA alkyltransferase insensitive to O6-benzylguanine.
    Xu-Welliver M; Pegg AE
    Biochem J; 2000 Apr; 347(Pt 2):519-26. PubMed ID: 10749682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.