BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 36607253)

  • 1. The Evolution of SNAP-Tag Labels.
    Dreyer R; Pfukwa R; Barth S; Hunter R; Klumperman B
    Biomacromolecules; 2023 Feb; 24(2):517-530. PubMed ID: 36607253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One-step site-specific antibody fragment auto-conjugation using SNAP-tag technology.
    Hussain AF; Heppenstall PA; Kampmeier F; Meinhold-Heerlein I; Barth S
    Nat Protoc; 2019 Nov; 14(11):3101-3125. PubMed ID: 31605098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescent labeling of COS-7 expressing SNAP-tag fusion proteins for live cell imaging.
    Provost CR; Sun L
    J Vis Exp; 2010 May; (39):. PubMed ID: 20485262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Releasable SNAP-tag probes for studying endocytosis and recycling.
    Cole NB; Donaldson JG
    ACS Chem Biol; 2012 Mar; 7(3):464-9. PubMed ID: 22216966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Site-specific protein labeling with SNAP-tags.
    Cole NB
    Curr Protoc Protein Sci; 2013 Sep; 73():30.1.1-30.1.16. PubMed ID: 24510614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of SNAP-tag fluorogenic probes for wash-free fluorescence imaging.
    Sun X; Zhang A; Baker B; Sun L; Howard A; Buswell J; Maurel D; Masharina A; Johnsson K; Noren CJ; Xu MQ; Corrêa IR
    Chembiochem; 2011 Sep; 12(14):2217-26. PubMed ID: 21793150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Benzylguanine thiol self-assembled monolayers for the immobilization of SNAP-tag proteins on microcontact-printed surface structures.
    Engin S; Trouillet V; Franz CM; Welle A; Bruns M; Wedlich D
    Langmuir; 2010 May; 26(9):6097-101. PubMed ID: 20369837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SNAP display: in vitro protein evolution in microdroplets.
    Kaltenbach M; Hollfelder F
    Methods Mol Biol; 2012; 805():101-11. PubMed ID: 22094803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conserved residue lysine165 is essential for the ability of O6-alkylguanine-DNA alkyltransferase to react with O6-benzylguanine.
    Xu-Welliver M; Kanugula S; Loktionova NA; Crone TM; Pegg AE
    Biochem J; 2000 Apr; 347(Pt 2):527-34. PubMed ID: 10749683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An engineered protein tag for multiprotein labeling in living cells.
    Gautier A; Juillerat A; Heinis C; Corrêa IR; Kindermann M; Beaufils F; Johnsson K
    Chem Biol; 2008 Feb; 15(2):128-36. PubMed ID: 18291317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Capturing Cell-Cell Interactions via SNAP-tag and CLIP-tag Technology.
    Hoehnel S; Lutolf MP
    Bioconjug Chem; 2015 Aug; 26(8):1678-86. PubMed ID: 26079967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Directed evolution of O6-alkylguanine-DNA alkyltransferase for applications in protein labeling.
    Gronemeyer T; Chidley C; Juillerat A; Heinis C; Johnsson K
    Protein Eng Des Sel; 2006 Jul; 19(7):309-16. PubMed ID: 16638797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of two novel tag-based labelling technologies for site-specific modification of proteins.
    Tirat A; Freuler F; Stettler T; Mayr LM; Leder L
    Int J Biol Macromol; 2006 Aug; 39(1-3):66-76. PubMed ID: 16503347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expanding the substrate selectivity of SNAP/CLIP-tagging of intracellular targets.
    Macias-Contreras M; Little KN; Zhu L
    Methods Enzymol; 2020; 638():233-257. PubMed ID: 32416915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quenched substrates for live-cell labeling of SNAP-tagged fusion proteins with improved fluorescent background.
    Stöhr K; Siegberg D; Ehrhard T; Lymperopoulos K; Öz S; Schulmeister S; Pfeifer AC; Bachmann J; Klingmüller U; Sourjik V; Herten DP
    Anal Chem; 2010 Oct; 82(19):8186-93. PubMed ID: 20815338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-specific, covalent labeling of recombinant antibody fragments via fusion to an engineered version of 6-O-alkylguanine DNA alkyltransferase.
    Kampmeier F; Ribbert M; Nachreiner T; Dembski S; Beaufils F; Brecht A; Barth S
    Bioconjug Chem; 2009 May; 20(5):1010-5. PubMed ID: 19388673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning the Reactivity of a Substrate for SNAP-Tag Expands Its Application for Recognition-Driven DNA-Protein Conjugation.
    Zhang Z; Nakata E; Dinh H; Saimura M; Rajendran A; Matsuda K; Morii T
    Chemistry; 2021 Dec; 27(72):18118-18128. PubMed ID: 34747070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic and Structural Characterization of the Self-Labeling Protein Tags HaloTag7, SNAP-tag, and CLIP-tag.
    Wilhelm J; Kühn S; Tarnawski M; Gotthard G; Tünnermann J; Tänzer T; Karpenko J; Mertes N; Xue L; Uhrig U; Reinstein J; Hiblot J; Johnsson K
    Biochemistry; 2021 Aug; 60(33):2560-2575. PubMed ID: 34339177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of a thermophilic O
    Rossi F; Morrone C; Massarotti A; Ferraris DM; Valenti A; Perugino G; Miggiano R
    Biochem Biophys Res Commun; 2018 Jun; 500(3):698-703. PubMed ID: 29684348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Point mutations at multiple sites including highly conserved amino acids maintain activity, but render O6-alkylguanine-DNA alkyltransferase insensitive to O6-benzylguanine.
    Xu-Welliver M; Pegg AE
    Biochem J; 2000 Apr; 347(Pt 2):519-26. PubMed ID: 10749682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.