These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 36607514)

  • 1. Ventilation during continuous compressions or at 30:2 compression-to-ventilation ratio results in similar arterial oxygen and carbon dioxide levels in an experimental model of prolonged cardiac arrest.
    Kopra J; Litonius E; Pekkarinen PT; Laitinen M; Heinonen JA; Fontanelli L; Mäkiaho TP; Skrifvars MB
    Intensive Care Med Exp; 2023 Jan; 11(1):3. PubMed ID: 36607514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxygenation and ventilation during prolonged experimental cardiopulmonary resuscitation with either continuous or 30:2 compression-to-ventilation ratios together with 10 cmH
    Kopra J; Litonius E; Pekkarinen PT; Laitinen M; Heinonen JA; Fontanelli L; Skrifvars MB
    Intensive Care Med Exp; 2024 Apr; 12(1):36. PubMed ID: 38607459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous chest compressions are associated with higher peak inspiratory pressures when compared to 30:2 in an experimental cardiac arrest model.
    Mälberg J; Marchesi S; Spangler D; Hadziosmanovic N; Smekal D; Rubertsson S
    Intensive Care Med Exp; 2023 Nov; 11(1):75. PubMed ID: 37938394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neonatal resuscitation with continuous chest compressions and high frequency percussive ventilation in preterm lambs.
    Giusto E; Sankaran D; Lesneski A; Joudi H; Hardie M; Hammitt V; Zeinali L; Lakshminrusimha S; Vali P
    Pediatr Res; 2024 Jan; 95(1):160-166. PubMed ID: 37726545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of continuous compression with regular ventilations versus 30:2 compressions-ventilations strategy during mechanical cardiopulmonary resuscitation in a porcine model of cardiac arrest.
    Yang Z; Liu Q; Zheng G; Liu Z; Jiang L; Lin Q; Chen R; Tang W
    J Thorac Dis; 2017 Sep; 9(9):3232-3238. PubMed ID: 29221300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of an inspiratory impedance threshold valve during chest compressions without assisted ventilation may result in hypoxaemia.
    Herff H; Raedler C; Zander R; Wenzel V; Schmittinger CA; Brenner E; Rieger M; Lindner KH
    Resuscitation; 2007 Mar; 72(3):466-76. PubMed ID: 17150297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Interposed abdominal pulling-pressing cardiopulmonary resuscitation improve the resuscitation effect for patients with cardiac arrest].
    Wang D; Feng X; Han Y
    Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2018 May; 30(5):466-470. PubMed ID: 29764553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Experimental study on effect of airway pressure on cardiopulmonary resuscitation].
    Tan D; Sun F; Fu Y; Shao S; Zhang Y; Hu Y; Xu J; Zhu H; Yu X
    Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2017 Jun; 29(6):531-535. PubMed ID: 28625243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous compression with asynchronous ventilation improves CPR prognosis? A meta-analysis from human and animal studies.
    Sun M; Zhu A; Tang Y
    Am J Emerg Med; 2023 Feb; 64():26-36. PubMed ID: 36435007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bag-Valve-Mask Ventilation and Survival From Out-of-Hospital Cardiac Arrest: A Multicenter Study.
    Idris AH; Aramendi Ecenarro E; Leroux B; Jaureguibeitia X; Yang BY; Shaver S; Chang MP; Rea T; Kudenchuk P; Christenson J; Vaillancourt C; Callaway C; Salcido D; Carson J; Blackwood J; Wang HE
    Circulation; 2023 Dec; 148(23):1847-1856. PubMed ID: 37952192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Different Techniques of Respiratory Support Do Not Significantly Affect Gas Exchange during Cardiopulmonary Resuscitation in a Newborn Piglet Model.
    Mendler MR; Maurer M; Hassan MA; Huang L; Waitz M; Mayer B; Hummler HD
    Neonatology; 2015; 108(1):73-80. PubMed ID: 26044192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intrathoracic pressure regulator during continuous-chest-compression advanced cardiac resuscitation improves vital organ perfusion pressures in a porcine model of cardiac arrest.
    Yannopoulos D; Nadkarni VM; McKnite SH; Rao A; Kruger K; Metzger A; Benditt DG; Lurie KG
    Circulation; 2005 Aug; 112(6):803-11. PubMed ID: 16061732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. IMPACT OF DIFFERENT VENTILATION STRATEGIES ON GAS EXCHANGES AND CIRCULATION DURING PROLONGED MECHANICAL CARDIO-PULMONARY RESUSCITATION IN A PORCINE MODEL.
    Fritz C; Jaeger D; Luo Y; Lardenois E; Badat B; Roquet FE; Rigollot M; Kimmoun A; Tran N'; Richard JM; Chouihed T; Levy B
    Shock; 2022 Aug; 58(2):119-127. PubMed ID: 34710880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effects of interposed abdominal pulling-pressing cardiopulmonary resuscitation on hemodynamics and oxygen metabolism in patients with cardiac arrest].
    Gu C; Liu S; Liu K; Xie Y; Wang L
    Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2019 Nov; 31(11):1406-1410. PubMed ID: 31898574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An investigation of thrust, depth and the impedance cardiogram as measures of cardiopulmonary resuscitation efficacy in a porcine model of cardiac arrest.
    Howe A; O'Hare P; Crawford P; Delafont B; McAlister O; Di Maio R; Clutton E; Adgey J; McEneaney D
    Resuscitation; 2015 Nov; 96():114-20. PubMed ID: 26234892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Left ventricle chest compression improves ETCO
    Marshall RA; Morton JS; Luchkanych AMS; El Karsh Y; El Karsh Z; Morse C; Tomczak CR; Grunau BE; Olver TD
    Resusc Plus; 2022 Dec; 12():100326. PubMed ID: 36407570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hemodynamic and respiratory effects of negative tracheal pressure during CPR in pigs.
    Yannopoulos D; Aufderheide TP; McKnite S; Kotsifas K; Charris R; Nadkarni V; Lurie KG
    Resuscitation; 2006 Jun; 69(3):487-94. PubMed ID: 16678959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The combination of chest compression synchronized ventilation and aortic balloon occlusion improve the outcomes of cardiopulmonary resuscitation in swine.
    Xu J; Khan ZU; Zhang M; Wang J; Zhou M; Zheng Z; Chen Q; Zhou G; Zhang M
    Front Med (Lausanne); 2022; 9():1057000. PubMed ID: 36619612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chest compressions versus ventilation plus chest compressions: a randomized trial in a pediatric asphyxial cardiac arrest animal model.
    Botran M; Lopez-Herce J; Urbano J; Solana MJ; Garcia A; Carrillo A
    Intensive Care Med; 2011 Nov; 37(11):1873-80. PubMed ID: 21847647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased cortical cerebral blood flow with LUCAS; a new device for mechanical chest compressions compared to standard external compressions during experimental cardiopulmonary resuscitation.
    Rubertsson S; Karlsten R
    Resuscitation; 2005 Jun; 65(3):357-63. PubMed ID: 15919574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.