These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 36607603)

  • 21. Passage of cell-penetrating peptides across a human epithelial cell layer in vitro.
    Lindgren ME; Hällbrink MM; Elmquist AM; Langel U
    Biochem J; 2004 Jan; 377(Pt 1):69-76. PubMed ID: 12968950
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Orally-delivered insulin-peptide nanocomplexes enhance transcytosis from cellular depots and improve diabetic blood glucose control.
    Rehmani S; McLaughlin CM; Eltaher HM; Moffett RC; Flatt PR; Dixon JE
    J Control Release; 2023 Aug; 360():93-109. PubMed ID: 37315695
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cellular uptake but low permeation of human calcitonin-derived cell penetrating peptides and Tat(47-57) through well-differentiated epithelial models.
    Tréhin R; Krauss U; Beck-Sickinger AG; Merkle HP; Nielsen HM
    Pharm Res; 2004 Jul; 21(7):1248-56. PubMed ID: 15290867
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Overcoming the diffusion barrier of mucus and absorption barrier of epithelium by self-assembled nanoparticles for oral delivery of insulin.
    Shan W; Zhu X; Liu M; Li L; Zhong J; Sun W; Zhang Z; Huang Y
    ACS Nano; 2015 Mar; 9(3):2345-56. PubMed ID: 25658958
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced oral absorption of insulin using colon-specific nanoparticles co-modified with amphiphilic chitosan derivatives and cell-penetrating peptides.
    Guo F; Ouyang T; Peng T; Zhang X; Xie B; Yang X; Liang D; Zhong H
    Biomater Sci; 2019 Mar; 7(4):1493-1506. PubMed ID: 30672923
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modified nanoparticles with cell-penetrating peptide and amphipathic chitosan derivative for enhanced oral colon absorption of insulin: preparation and evaluation.
    Guo F; Zhang M; Gao Y; Zhu S; Chen S; Liu W; Zhong H; Liu J
    Drug Deliv; 2016 Jul; 23(6):2003-14. PubMed ID: 26181840
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Amphiphilic Lipopeptide-Mediated Transport of Insulin and Cell Membrane Penetration Mechanism.
    Zhang Y; Li L; Han M; Hu J; Zhang L
    Molecules; 2015 Dec; 20(12):21569-83. PubMed ID: 26633348
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fluorophore labeling of a cell-penetrating peptide induces differential effects on its cellular distribution and affects cell viability.
    Birch D; Christensen MV; Staerk D; Franzyk H; Nielsen HM
    Biochim Biophys Acta Biomembr; 2017 Dec; 1859(12):2483-2494. PubMed ID: 28919344
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of Cell-Penetrating Peptides as Versatile, Effective Absorption Enhancers: Relation to Molecular Weight and Inherent Epithelial Drug Permeability.
    Kamei N; Yamanaka J; Oda Y; Kaneoka S; Koide Y; Haruna Y; Takahashi Y; Tamiwa H; Takeda-Morishita M
    Pharm Res; 2020 Sep; 37(10):182. PubMed ID: 32888051
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dependence of Intestinal Absorption Profile of Insulin on Carrier Morphology Composed of β-Cyclodextrin-Grafted Chitosan.
    Daimon Y; Kamei N; Kawakami K; Takeda-Morishita M; Izawa H; Takechi-Haraya Y; Saito H; Sakai H; Abe M; Ariga K
    Mol Pharm; 2016 Dec; 13(12):4034-4042. PubMed ID: 27749081
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Brain delivery of insulin boosted by intranasal coadministration with cell-penetrating peptides.
    Kamei N; Takeda-Morishita M
    J Control Release; 2015 Jan; 197():105-10. PubMed ID: 25445695
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Usefulness of cell-penetrating peptides to improve intestinal insulin absorption.
    Kamei N; Morishita M; Eda Y; Ida N; Nishio R; Takayama K
    J Control Release; 2008 Nov; 132(1):21-5. PubMed ID: 18727945
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Use of a non-covalent cell-penetrating peptide strategy to enhance the nasal delivery of interferon beta and its PEGylated form.
    Iwase Y; Kamei N; Khafagy el-S; Miyamoto M; Takeda-Morishita M
    Int J Pharm; 2016 Aug; 510(1):304-10. PubMed ID: 27343364
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The role of intermolecular interactions with penetratin and its analogue on the enhancement of absorption of nasal therapeutic peptides.
    Khafagy el-S; Morishita M; Takayama K
    Int J Pharm; 2010 Mar; 388(1-2):209-12. PubMed ID: 20060451
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Applicability and Limitations of Cell-Penetrating Peptides in Noncovalent Mucosal Drug or Carrier Delivery Systems.
    Kamei N; Bech Nielsen EJ; Nakakubo T; Aoyama Y; Rahbek UL; Pedersen BL; Takeda-Morishita M
    J Pharm Sci; 2016 Feb; 105(2):747-753. PubMed ID: 26869427
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cell-Penetrating Peptides as Carriers for Oral Delivery of Biopharmaceuticals.
    Kristensen M; Nielsen HM
    Basic Clin Pharmacol Toxicol; 2016 Feb; 118(2):99-106. PubMed ID: 26525297
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oral delivery of anti-diabetes therapeutics using cell penetrating and transcytosing peptide strategies.
    Rehmani S; Dixon JE
    Peptides; 2018 Feb; 100():24-35. PubMed ID: 29412825
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural requirements of penetratin absorption enhancement efficiency for insulin delivery.
    Khafagy el-S; Morishita M; Ida N; Nishio R; Isowa K; Takayama K
    J Control Release; 2010 May; 143(3):302-10. PubMed ID: 20096319
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Designing and enhancing the antifungal activity of corneal specific cell penetrating peptide using gelatin hydrogel delivery system.
    Amit C; Muralikumar S; Janaki S; Lakshmipathy M; Therese KL; Umashankar V; Padmanabhan P; Narayanan J
    Int J Nanomedicine; 2019; 14():605-622. PubMed ID: 30697045
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A novel nanoemulsion-based method to produce ultrasmall, water-dispersible nanoparticles from chitosan, surface modified with cell-penetrating peptide for oral delivery of proteins and peptides.
    Barbari GR; Dorkoosh FA; Amini M; Sharifzadeh M; Atyabi F; Balalaie S; Rafiee Tehrani N; Rafiee Tehrani M
    Int J Nanomedicine; 2017; 12():3471-3483. PubMed ID: 28496323
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.