These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 36607603)
61. Screening for effective cell-penetrating peptides with minimal impact on epithelial cells and gut commensals Gelli HP; Vazquez-Uribe R; Sommer MOA Front Pharmacol; 2022; 13():1049324. PubMed ID: 36408245 [TBL] [Abstract][Full Text] [Related]
62. Selenium as an alternative peptide label - comparison to fluorophore-labelled penetratin. Hyrup Møller L; Bahnsen JS; Nielsen HM; Østergaard J; Stürup S; Gammelgaard B Eur J Pharm Sci; 2015 Jan; 67():76-84. PubMed ID: 25447743 [TBL] [Abstract][Full Text] [Related]
63. Delivery of siRNA Complexed with Palmitoylated α-Peptide/β-Peptoid Cell-Penetrating Peptidomimetics: Membrane Interaction and Structural Characterization of a Lipid-Based Nanocarrier System. Jing X; Foged C; Martin-Bertelsen B; Yaghmur A; Knapp KM; Malmsten M; Franzyk H; Nielsen HM Mol Pharm; 2016 Jun; 13(6):1739-49. PubMed ID: 26654841 [TBL] [Abstract][Full Text] [Related]
64. Noninvasive insulin delivery: the great potential of cell-penetrating peptides. Kamei N; Nielsen EJ; Khafagy el-S; Takeda-Morishita M Ther Deliv; 2013 Mar; 4(3):315-26. PubMed ID: 23442079 [TBL] [Abstract][Full Text] [Related]
65. Penetratin-functionalized PEG-PLA nanoparticles for brain drug delivery. Xia H; Gao X; Gu G; Liu Z; Hu Q; Tu Y; Song Q; Yao L; Pang Z; Jiang X; Chen J; Chen H Int J Pharm; 2012 Oct; 436(1-2):840-50. PubMed ID: 22841849 [TBL] [Abstract][Full Text] [Related]
66. Investigation Of Vitamin B Long L; Lai M; Mao X; Luo J; Yuan X; Zhang LM; Ke Z; Yang L; Deng DY Int J Nanomedicine; 2019; 14():7743-7758. PubMed ID: 31571874 [TBL] [Abstract][Full Text] [Related]
67. Cell-Penetrating Peptides as Carriers for Transepithelial Drug Delivery In Vitro. Rønholt S; Kristensen M; Nielsen HM Methods Mol Biol; 2015; 1324():261-77. PubMed ID: 26202275 [TBL] [Abstract][Full Text] [Related]
68. Functional nanoparticles exploit the bile acid pathway to overcome multiple barriers of the intestinal epithelium for oral insulin delivery. Fan W; Xia D; Zhu Q; Li X; He S; Zhu C; Guo S; Hovgaard L; Yang M; Gan Y Biomaterials; 2018 Jan; 151():13-23. PubMed ID: 29055774 [TBL] [Abstract][Full Text] [Related]
69. Evidence for a plasma membrane-mediated permeability barrier to Tat basic domain in well-differentiated epithelial cells: lack of correlation with heparan sulfate. Violini S; Sharma V; Prior JL; Dyszlewski M; Piwnica-Worms D Biochemistry; 2002 Oct; 41(42):12652-61. PubMed ID: 12379107 [TBL] [Abstract][Full Text] [Related]
70. Cell-penetrating peptide together with PEG-modified mesostructured silica nanoparticles promotes mucous permeation and oral delivery of therapeutic proteins and peptides. Tan X; Zhang Y; Wang Q; Ren T; Gou J; Guo W; Yin T; He H; Zhang Y; Tang X Biomater Sci; 2019 Jun; 7(7):2934-2950. PubMed ID: 31094367 [TBL] [Abstract][Full Text] [Related]
71. Cell-penetrating peptides as tools to enhance non-injectable delivery of biopharmaceuticals. Kristensen M; Nielsen HM Tissue Barriers; 2016; 4(2):e1178369. PubMed ID: 27358757 [TBL] [Abstract][Full Text] [Related]
72. Shape effect in the design of nanowire-coated microparticles as transepithelial drug delivery devices. Uskoković V; Lee K; Lee PP; Fischer KE; Desai TA ACS Nano; 2012 Sep; 6(9):7832-41. PubMed ID: 22900471 [TBL] [Abstract][Full Text] [Related]
73. Oral biodrug delivery using cell-penetrating peptide. Khafagy el-S; Morishita M Adv Drug Deliv Rev; 2012 May; 64(6):531-9. PubMed ID: 22245080 [TBL] [Abstract][Full Text] [Related]
74. Hydrophobic and electrostatic interactions between cell penetrating peptides and plasmid DNA are important for stable non-covalent complexation and intracellular delivery. Upadhya A; Sangave PC J Pept Sci; 2016 Oct; 22(10):647-659. PubMed ID: 27723187 [TBL] [Abstract][Full Text] [Related]
76. Enhanced cellular uptake of albumin-based lyophilisomes when functionalized with cell-penetrating peptide TAT in HeLa cells. van Bracht E; Versteegden LR; Stolle S; Verdurmen WP; Woestenenk R; Raavé R; Hafmans T; Oosterwijk E; Brock R; van Kuppevelt TH; Daamen WF PLoS One; 2014; 9(11):e110813. PubMed ID: 25369131 [TBL] [Abstract][Full Text] [Related]
77. Monitoring penetratin interactions with lipid membranes and cell internalization using a new hydration-sensitive fluorescent probe. Zamotaiev OM; Postupalenko VY; Shvadchak VV; Pivovarenko VG; Klymchenko AS; Mély Y Org Biomol Chem; 2014 Sep; 12(36):7036-44. PubMed ID: 25072870 [TBL] [Abstract][Full Text] [Related]
78. Examination of Effective Buccal Absorption of Salmon Calcitonin Using Cell-Penetrating Peptide-Conjugated Liposomal Drug Delivery System. Keum T; Noh G; Seo JE; Bashyal S; Sohn DH; Lee S Int J Nanomedicine; 2022; 17():697-710. PubMed ID: 35210769 [TBL] [Abstract][Full Text] [Related]
79. Distal phenylalanine modification for enhancing cellular delivery of fluorophores, proteins and quantum dots by cell penetrating peptides. Sayers EJ; Cleal K; Eissa NG; Watson P; Jones AT J Control Release; 2014 Dec; 195():55-62. PubMed ID: 25108152 [TBL] [Abstract][Full Text] [Related]
80. Effective nose-to-brain delivery of exendin-4 via coadministration with cell-penetrating peptides for improving progressive cognitive dysfunction. Kamei N; Okada N; Ikeda T; Choi H; Fujiwara Y; Okumura H; Takeda-Morishita M Sci Rep; 2018 Dec; 8(1):17641. PubMed ID: 30518944 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]