BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 3660765)

  • 1. Post-thaw storage at 4 degrees C of previously frozen red cells with retention of 2,3-DPG.
    Moore GL; Ledford ME; Mathewson PJ; Hankins DJ; Shah SB
    Vox Sang; 1987; 53(1):15-8. PubMed ID: 3660765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Liquid storage at 4 degrees C of previously frozen red cells.
    Moore GL; Ledford ME; Mathewson PJ; Hankins DJ
    Transfusion; 1987; 27(6):496-8. PubMed ID: 3686660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo viability studies of two additive solutions in the postthaw preservation of red cells held for 3 weeks at 4 degrees C.
    Moore GL; Hess JR; Ledford ME
    Transfusion; 1993 Sep; 33(9):709-12. PubMed ID: 8212114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preservation of red blood cells with purines and nucleosides. I. Changes of ATP, 2,3-P2G and further parameters of metabolism in red cells stored as whole blood and as resuspension at 4 degrees C and 25 degrees C.
    Strauss D; Akerblom O; Högman CF; de Verdier CH
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1980; 107(3):397-416. PubMed ID: 6159279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved red blood cell storage using optional additive systems (OAS) containing adenine, glucose and ascorbate-2-phosphate.
    Moore GL; Ledford ME; Brummell MR
    Transfusion; 1981; 21(6):723-31. PubMed ID: 7314223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of phosphoenolpyruvate on metabolic and morphological recovery of red cells after prolonged liquid storage and subsequent freezing in glycerol medium.
    Ohyama M; Aritake H; Shiraki H; Hamasaki N; Maeda Y
    Cryobiology; 1992 Jun; 29(3):342-6. PubMed ID: 1499319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Storage of red cell concentrates in CPD-A2 for 42 and 49 days.
    Beutler E; West C
    J Lab Clin Med; 1983 Jul; 102(1):53-62. PubMed ID: 6854134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Five-week red cell storage with preservation of 2,3 DPG.
    Carmen RA; Sohmer PR; Leng BS; Moore GL; Nelson EJ; Simon TL; Myhre BA; Marcus CS; Moroff G; Lewis LM
    Transfusion; 1988; 28(2):157-61. PubMed ID: 3354043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Altered processing of thawed red cells to improve the in vitro quality during postthaw storage at 4 degrees C.
    Lagerberg JW; Truijens-de Lange R; de Korte D; Verhoeven AJ
    Transfusion; 2007 Dec; 47(12):2242-9. PubMed ID: 17714415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo regeneration of red cell 2,3-diphosphoglycerate following transfusion of DPG-depleted AS-1, AS-3 and CPDA-1 red cells.
    Heaton A; Keegan T; Holme S
    Br J Haematol; 1989 Jan; 71(1):131-6. PubMed ID: 2492818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Refrigerated storage of lyophilized and rehydrated, lyophilized human red cells.
    Sowemimo-Coker SO; Goodrich RP; Zerez CR; Tanaka KR
    Transfusion; 1993 Apr; 33(4):322-9. PubMed ID: 8480352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Red cell ATP and 2,3-diphosphoglycerate concentrations as a function of dihydroxyacetone supplementation of CPD adenine.
    Moore GL; Ledford ME; Brummell MR
    Vox Sang; 1981; 41(1):11-7. PubMed ID: 7324438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of phosphoenolpyruvate into the preparation of frozen and thawed red cells.
    Shiraki H; Ohyama M; Hamasaki N; Maeda Y
    Biomed Biochim Acta; 1990; 49(2-3):S204-7. PubMed ID: 2386507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of an optimized additive solution containing ascorbate-2-phosphate for the preservation of red cells with retention of 2,3 diphosphoglycerate.
    Moore GL; Ledford ME
    Transfusion; 1985; 25(4):319-24. PubMed ID: 4024228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quality evaluation of frozen apheresis red blood cell storage with 21-day postthaw storage in additive solution 3 and saline-adenine-glucose-mannitol: biochemical and chromium-51 recovery measures.
    Bohonek M; Petrás M; Turek I; Urbanová J; Hrádek T; Chmátal P; Staroprazská V; Kostírová J; Horcicková D; Duchková S; Svobodová J; Tejcková E
    Transfusion; 2010 May; 50(5):1007-13. PubMed ID: 20051061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Storage of saline-adenine-glucose-mannitol-suspended red cells in a new plastic container: polyvinylchloride plasticized with butyryl-n-trihexyl-citrate.
    Högman CF; Eriksson L; Ericson A; Reppucci AJ
    Transfusion; 1991 Jan; 31(1):26-9. PubMed ID: 1898784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of an additive solution for preservation of canine red blood cells.
    Wardrop KJ; Owen TJ; Meyers KM
    J Vet Intern Med; 1994; 8(4):253-7. PubMed ID: 7983619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blood preservation 35. Red cell 2,3-DPG and ATP maintained by DHA-ascorbate-phosphate.
    Dawson RB; Hershey RT; Myers CS; Miller RM
    Transfusion; 1981; 21(2):219-23. PubMed ID: 7222204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of refreezing previously frozen-deglycerolized red blood cells.
    Kahn RA; Auster M; Miller WV
    Transfusion; 1978; 18(2):204-5. PubMed ID: 644642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The 24-hour posttransfusion survival, oxygen transport function, and residual hemolysis of human outdated-rejuvenated red cell concentrates after washing and storage at 4 degrees C for 24 to 72 hours.
    Valeri CR; Gray AD; Cassidy GP; Riordan W; Pivacek LE
    Transfusion; 1984; 24(4):323-6. PubMed ID: 6464156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.