BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 36607777)

  • 1. LAMC2 Regulates Key Transcriptional and Targetable Effectors to Support Pancreatic Cancer Growth.
    Erice O; Narayanan S; Feliu I; Entrialgo-Cadierno R; Malinova A; Vicentini C; Guruceaga E; Delfino P; Trajkovic-Arsic M; Moreno H; Valencia K; Blanco E; Macaya I; Öhlund D; Khatri P; Lecanda F; Scarpa A; Siveke JT; Corbo V; Ponz-Sarvise M; Vicent S
    Clin Cancer Res; 2023 Mar; 29(6):1137-1154. PubMed ID: 36607777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overexpression of laminin-5 gamma-2 promotes tumorigenesis of pancreatic ductal adenocarcinoma through EGFR/ERK1/2/AKT/mTOR cascade.
    Kirtonia A; Pandey AK; Ramachandran B; Mishra DP; Dawson DW; Sethi G; Ganesan TS; Koeffler HP; Garg M
    Cell Mol Life Sci; 2022 Jun; 79(7):362. PubMed ID: 35699794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silencing of LAMC2 Reverses Epithelial Mesenchymal Transition and Inhibits Progression in Pancreatic Ductal Adenocarcinoma via Inactivation of the NF-κB Signaling Pathway.
    Huang L; Han Y; Zhou Q; Sun Z; Yan J
    Crit Rev Eukaryot Gene Expr; 2023; 33(4):13-23. PubMed ID: 37183943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LAMC2 promotes cancer progression and gemcitabine resistance through modulation of EMT and ATP-binding cassette transporters in pancreatic ductal adenocarcinoma.
    Okada Y; Takahashi N; Takayama T; Goel A
    Carcinogenesis; 2021 Apr; 42(4):546-556. PubMed ID: 33624791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ITGA2, LAMB3, and LAMC2 may be the potential therapeutic targets in pancreatic ductal adenocarcinoma: an integrated bioinformatics analysis.
    Islam S; Kitagawa T; Baron B; Abiko Y; Chiba I; Kuramitsu Y
    Sci Rep; 2021 May; 11(1):10563. PubMed ID: 34007003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LAMC2 marks a tumor-initiating cell population with an aggressive signature in pancreatic cancer.
    Cave DD; Buonaiuto S; Sainz B; Fantuz M; Mangini M; Carrer A; Di Domenico A; Iavazzo TT; Andolfi G; Cortina C; Sevillano M; Heeschen C; Colonna V; Corona M; Cucciardi A; Di Guida M; Batlle E; De Luca A; Lonardo E
    J Exp Clin Cancer Res; 2022 Oct; 41(1):315. PubMed ID: 36289544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the diagnostic ability of laminin gene family for pancreatic ductal adenocarcinoma.
    Yang C; Liu Z; Zeng X; Wu Q; Liao X; Wang X; Han C; Yu T; Zhu G; Qin W; Peng T
    Aging (Albany NY); 2019 Jun; 11(11):3679-3703. PubMed ID: 31182680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of pH by Carbonic Anhydrase 9 Mediates Survival of Pancreatic Cancer Cells With Activated KRAS in Response to Hypoxia.
    McDonald PC; Chafe SC; Brown WS; Saberi S; Swayampakula M; Venkateswaran G; Nemirovsky O; Gillespie JA; Karasinska JM; Kalloger SE; Supuran CT; Schaeffer DF; Bashashati A; Shah SP; Topham JT; Yapp DT; Li J; Renouf DJ; Stanger BZ; Dedhar S
    Gastroenterology; 2019 Sep; 157(3):823-837. PubMed ID: 31078621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of Aurora Kinase A Induces Necroptosis in Pancreatic Carcinoma.
    Xie Y; Zhu S; Zhong M; Yang M; Sun X; Liu J; Kroemer G; Lotze M; Zeh HJ; Kang R; Tang D
    Gastroenterology; 2017 Nov; 153(5):1429-1443.e5. PubMed ID: 28764929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ribonucleoprotein HNRNPA2B1 interacts with and regulates oncogenic KRAS in pancreatic ductal adenocarcinoma cells.
    Barceló C; Etchin J; Mansour MR; Sanda T; Ginesta MM; Sanchez-Arévalo Lobo VJ; Real FX; Capellà G; Estanyol JM; Jaumot M; Look AT; Agell N
    Gastroenterology; 2014 Oct; 147(4):882-892.e8. PubMed ID: 24998203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The phospholipid transporter PITPNC1 links KRAS to MYC to prevent autophagy in lung and pancreatic cancer.
    Entrialgo-Cadierno R; Cueto-Ureña C; Welch C; Feliu I; Macaya I; Vera L; Morales X; Michelina SV; Scaparone P; Lopez I; Darbo E; Erice O; Vallejo A; Moreno H; Goñi-Salaverri A; Lara-Astiaso D; Halberg N; Cortes-Dominguez I; Guruceaga E; Ambrogio C; Lecanda F; Vicent S
    Mol Cancer; 2023 May; 22(1):86. PubMed ID: 37210549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibiting signal transducer and activator of transcription-3 increases response to gemcitabine and delays progression of pancreatic cancer.
    Venkatasubbarao K; Peterson L; Zhao S; Hill P; Cao L; Zhou Q; Nawrocki ST; Freeman JW
    Mol Cancer; 2013 Sep; 12(1):104. PubMed ID: 24025152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased Serotonin Signaling Contributes to the Warburg Effect in Pancreatic Tumor Cells Under Metabolic Stress and Promotes Growth of Pancreatic Tumors in Mice.
    Jiang SH; Li J; Dong FY; Yang JY; Liu DJ; Yang XM; Wang YH; Yang MW; Fu XL; Zhang XX; Li Q; Pang XF; Huo YM; Li J; Zhang JF; Lee HY; Lee SJ; Qin WX; Gu JR; Sun YW; Zhang ZG
    Gastroenterology; 2017 Jul; 153(1):277-291.e19. PubMed ID: 28315323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Upregulated circular RNA circ_0007534 indicates an unfavorable prognosis in pancreatic ductal adenocarcinoma and regulates cell proliferation, apoptosis, and invasion by sponging miR-625 and miR-892b.
    Hao L; Rong W; Bai L; Cui H; Zhang S; Li Y; Chen D; Meng X
    J Cell Biochem; 2019 Mar; 120(3):3780-3789. PubMed ID: 30382592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interleukin 35 Expression Correlates With Microvessel Density in Pancreatic Ductal Adenocarcinoma, Recruits Monocytes, and Promotes Growth and Angiogenesis of Xenograft Tumors in Mice.
    Huang C; Li Z; Li N; Li Y; Chang A; Zhao T; Wang X; Wang H; Gao S; Yang S; Hao J; Ren H
    Gastroenterology; 2018 Feb; 154(3):675-688. PubMed ID: 28989066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laminin‑332 mediates proliferation, apoptosis, invasion, migration and epithelial‑to‑mesenchymal transition in pancreatic ductal adenocarcinoma.
    Huang C; Chen J
    Mol Med Rep; 2021 Jan; 23(1):. PubMed ID: 33179081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Histone deacetylase inhibition is synthetically lethal with arginine deprivation in pancreatic cancers with low argininosuccinate synthetase 1 expression.
    Kim SS; Xu S; Cui J; Poddar S; Le TM; Hayrapetyan H; Li L; Wu N; Moore AM; Zhou L; Yu AC; Dann AM; Elliott IA; Abt ER; Kim W; Dawson DW; Radu CG; Donahue TR
    Theranostics; 2020; 10(2):829-840. PubMed ID: 31903153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preclinical validation of 3-phosphoinositide-dependent protein kinase 1 inhibition in pancreatic cancer.
    Emmanouilidi A; Fyffe CA; Ferro R; Edling CE; Capone E; Sestito S; Rapposelli S; Lattanzio R; Iacobelli S; Sala G; Maffucci T; Falasca M
    J Exp Clin Cancer Res; 2019 May; 38(1):191. PubMed ID: 31088502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of GLI Underlies a Role for BET Bromodomains in Pancreatic Cancer Growth and the Tumor Microenvironment.
    Huang Y; Nahar S; Nakagawa A; Fernandez-Barrena MG; Mertz JA; Bryant BM; Adams CE; Mino-Kenudson M; Von Alt KN; Chang K; Conery AR; Hatton C; Sims RJ; Fernandez-Zapico ME; Wang X; Lillemoe KD; Fernández-Del Castillo C; Warshaw AL; Thayer SP; Liss AS
    Clin Cancer Res; 2016 Aug; 22(16):4259-70. PubMed ID: 27169995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laminin, gamma 2 (LAMC2): a promising new putative pancreatic cancer biomarker identified by proteomic analysis of pancreatic adenocarcinoma tissues.
    Kosanam H; Prassas I; Chrystoja CC; Soleas I; Chan A; Dimitromanolakis A; Blasutig IM; Rückert F; Gruetzmann R; Pilarsky C; Maekawa M; Brand R; Diamandis EP
    Mol Cell Proteomics; 2013 Oct; 12(10):2820-32. PubMed ID: 23798558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.