BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 36607829)

  • 1. Probing the Protein Corona of Nanoparticles in a Fluid Flow by Single-Particle Differenced Resonance Light Scattering Correlation Spectroscopy.
    Zhang T; Dong C; Ren J
    Anal Chem; 2023 Jan; ():. PubMed ID: 36607829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resonance Light-Scattering Correlation Spectroscopy and Its Application in Analytical Chemistry for Life Science.
    Dong C; Ren J
    Acc Chem Res; 2023 Oct; 56(19):2582-2594. PubMed ID: 37706459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Situ Assay of Proteins Incorporated with Unnatural Amino Acids in Single Living Cells by Differenced Resonance Light Scattering Correlation Spectroscopy.
    Xu J; Liu Y; Li F; Deng L; Dong C; Ren J
    Anal Chem; 2021 Jul; 93(27):9329-9336. PubMed ID: 34171193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitive single particle method for characterizing rapid rotational and translational diffusion and aspect ratio of anisotropic nanoparticles and its application in immunoassays.
    Zhang B; Lan T; Huang X; Dong C; Ren J
    Anal Chem; 2013 Oct; 85(20):9433-8. PubMed ID: 24059451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoparticle-cell interactions: molecular structure of the protein corona and cellular outcomes.
    Fleischer CC; Payne CK
    Acc Chem Res; 2014 Aug; 47(8):2651-9. PubMed ID: 25014679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasma Parameters During Nanoparticle-Enhanced Laser-Induced Breakdown Spectroscopy (NELIBS) in the Presence of Nanoparticle-Protein Conjugates.
    Dell'Aglio M; Mallardi A; Gaudiuso R; Giacomo A
    Appl Spectrosc; 2023 Nov; 77(11):1253-1263. PubMed ID: 37700694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ detection of protein corona on single particle by rotational diffusivity.
    Lin X; Pan Q; He Y
    Nanoscale; 2019 Oct; 11(39):18367-18374. PubMed ID: 31573584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Size Distribution of Nanoparticles in Solution Characterized by Combining Resonance Light Scattering Correlation Spectroscopy with the Maximum Entropy Method.
    Zhang B; Liu H; Huang X; Dong C; Ren J
    Anal Chem; 2017 Nov; 89(22):12609-12616. PubMed ID: 29076722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein-corona formation on aluminum doped zinc oxide and gallium nitride nanoparticles.
    Ciobanu V; Roncari F; Ceccone G; Braniste T; Ponti J; Bogni A; Guerrini G; Cassano D; Colpo P; Tiginyanu I
    J Appl Biomater Funct Mater; 2022; 20():22808000221131881. PubMed ID: 36254110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biophysical study of DC electric field induced stable formation of albumin-gold nanoparticles corona and curcumin binding.
    Kumar M; Jaiswal VD; Pangam DS; Bhatia P; Kulkarni A; Dongre PM
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Jan; 305():123469. PubMed ID: 37778178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Particle-by-Particle In Situ Characterization of the Protein Corona via Real-Time 3D Single-Particle-Tracking Spectroscopy*.
    Tan X; Welsher K
    Angew Chem Int Ed Engl; 2021 Oct; 60(41):22359-22367. PubMed ID: 34015174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Situ Characterization of Protein Adsorption onto Nanoparticles by Fluorescence Correlation Spectroscopy.
    Shang L; Nienhaus GU
    Acc Chem Res; 2017 Feb; 50(2):387-395. PubMed ID: 28145686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combinatory interpretation of protein corona and shear stress for active cancer targeting of bioorthogonally clickable gelatin-oleic nanoparticles.
    Meghani NM; Amin H; Park C; Cui JH; Cao QR; Choi KH; Lee BJ
    Mater Sci Eng C Mater Biol Appl; 2020 Jun; 111():110760. PubMed ID: 32279783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of serum albumin protein corona for exploring cellular behaviors of fattigation-platform nanoparticles.
    Nguyen VH; Meghani NM; Amin HH; Tran TTD; Tran PHL; Park C; Lee BJ
    Colloids Surf B Biointerfaces; 2018 Oct; 170():179-186. PubMed ID: 29906703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein corona modulates interaction of spiky nanoparticles with lipid bilayers.
    Fleury JB; Werner M; Guével XL; Baulin VA
    J Colloid Interface Sci; 2021 Dec; 603():550-558. PubMed ID: 34216951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aggregation kinetics of biochar nanoparticles in aqueous environment: Interplays of anion type and bovine serum albumin.
    Yang W; Li B; Shang J
    Sci Total Environ; 2022 Aug; 833():155148. PubMed ID: 35405228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Size-Dependent Protein-Nanoparticle Interactions in Citrate-Stabilized Gold Nanoparticles: The Emergence of the Protein Corona.
    Piella J; Bastús NG; Puntes V
    Bioconjug Chem; 2017 Jan; 28(1):88-97. PubMed ID: 27997136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential aggregation of polystyrene and titanium dioxide nanoparticles under various salinity conditions and against multiple proteins types.
    Avellán-Llaguno RD; Zhang X; Zhao P; Velez A; Cruz M; Kikuchi J; Dong S; Huang Q
    Environ Sci Pollut Res Int; 2022 Oct; 29(49):74173-74184. PubMed ID: 35644000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The protein corona on nanoparticles as viewed from a nanoparticle-sizing perspective.
    Wang H; Lin Y; Nienhaus K; Nienhaus GU
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2018 Jul; 10(4):e1500. PubMed ID: 29071798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The In Vivo Biological Fate of Protein Corona: A Comparative PET Study of the Fate of Soft and Hard Protein Corona in Healthy Animal Models.
    Villacorta AM; Mielcarek A; Martinez MG; Jorge H; Henschke A; Coy E; Gomez-Vallejo V; Llop J; Moya SE
    Small; 2024 Apr; ():e2309616. PubMed ID: 38564782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.